📜  检查两个节点是否是二叉树中的表亲 |第 2 组

📅  最后修改于: 2022-05-13 01:57:17.676000             🧑  作者: Mango

检查两个节点是否是二叉树中的表亲 |第 2 组

给定一棵二叉树并且两个节点分别为“a”和“b”,确定两个给定节点是否是彼此的表亲。
如果两个节点处于同一级别并且具有不同的父节点,则它们是彼此的表兄弟。
示例

6
   /   \
  3     5
 / \   / \
7   8 1   3
Say two node be 7 and 1, result is TRUE.
Say two nodes are 3 and 5, result is FALSE.
Say two nodes are 7 and 5, result is FALSE.

已经讨论了 Set-1 中的解决方案,该解决方案通过执行二叉树的三次遍历来确定给定节点是否是表亲。该问题可以通过执行级别顺序遍历来解决。这个想法是使用队列来执行级别顺序遍历,其中每个队列元素是一对节点和该节点的父节点。对于在级别顺序遍历中访问的每个节点,检查该节点是第一个给定节点还是第二个给定节点。如果找到任何节点,则存储该节点的父节点。在执行级别顺序遍历时,一次遍历一个级别。如果两个节点都在给定级别中找到,则比较它们的父值以检查它们是否是兄弟姐妹。如果在给定级别中找到一个节点而未找到另一个节点,则给定节点不是表亲。
以下是上述方法的实现:

C++
// CPP program to check if two Nodes in
// a binary tree are cousins
// using level-order traversals
#include 
using namespace std;
 
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// A utility function to create a new
// Binary Tree Node
struct Node* newNode(int item)
{
    struct Node* temp = (struct Node*)malloc(sizeof(struct Node));
    temp->data = item;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Returns true if a and b are cousins,
// otherwise false.
bool isCousin(Node* root, Node* a, Node* b)
{
    if (root == NULL)
        return false;
 
    // To store parent of node a.
    Node* parA = NULL;
 
    // To store parent of node b.
    Node* parB = NULL;
 
    // queue to perform level order
    // traversal. Each element of
    // queue is a pair of node and
    // its parent.
    queue > q;
 
    // Dummy node to act like parent
    // of root node.
    Node* tmp = newNode(-1);
 
    // To store front element of queue.
    pair ele;
 
    // Push root to queue.
    q.push(make_pair(root, tmp));
    int levSize;
 
    while (!q.empty()) {
 
        // find number of elements in
        // current level.
        levSize = q.size();
        while (levSize) {
 
            ele = q.front();
            q.pop();
 
            // check if current node is node a
            // or node b or not.
            if (ele.first->data == a->data) {
                parA = ele.second;
            }
 
            if (ele.first->data == b->data) {
                parB = ele.second;
            }
 
            // push children of current node
            // to queue.
            if (ele.first->left) {
                q.push(make_pair(ele.first->left, ele.first));
            }
 
            if (ele.first->right) {
                q.push(make_pair(ele.first->right, ele.first));
            }
 
            levSize--;
 
            // If both nodes are found in
            // current level then no need
            // to traverse current level further.
            if (parA && parB)
                break;
        }
 
        // Check if both nodes are siblings
        // or not.
        if (parA && parB) {
            return parA != parB;
        }
 
        // If one node is found in current level
        // and another is not found, then
        // both nodes are not cousins.
        if ((parA && !parB) || (parB && !parA)) {
            return false;
        }
    }
 
    return false;
}
// Driver Code
int main()
{
    /*
            1
           /  \
          2    3
         / \  / \
        4   5 6  7
             \ \
             15 8
    */
 
    struct Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->left->right->right = newNode(15);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->right->left->right = newNode(8);
 
    struct Node *Node1, *Node2;
    Node1 = root->left->left;
    Node2 = root->right->right;
 
    isCousin(root, Node1, Node2) ? puts("Yes") : puts("No");
 
    return 0;
}


Java
// Java program to check if two Nodes in
// a binary tree are cousins
// using level-order traversals
import java.util.*;
import javafx.util.Pair;
 
// User defined node class
class Node
{
    int data;
    Node left, right;
 
    // Constructor to create a new tree node
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
class BinaryTree
{
    Node root;
 
    // Returns true if a and b are cousins,
    // otherwise false.
    boolean isCousin(Node node, Node a, Node b)
    {
        if(node == null)
            return false;
         
        // To store parent of node a.
        Node parA = null;
 
        // To store parent of node b.
        Node parB = null;
 
        // queue to perform level order
        // traversal. Each element of
        // queue is a pair of node and
        // its parent.
        Queue> q = new LinkedList<> ();
 
        // Dummy node to act like parent
        // of root node.
        Node tmp = new Node(-1);
 
        // To store front element of queue.
        Pair ele;
 
        // Push root to queue.
        q.add(new Pair  (node, tmp));
 
        int levelSize;
 
        while(!q.isEmpty())
        {
 
            // find number of elements in
            // current level.
            levelSize = q.size();
            while(levelSize != 0)
            {
                ele = q.peek();
                q.remove();
 
                // check if current node is node a
                // or node b or not.
                if(ele.getKey().data == a.data)
                    parA = ele.getValue();
 
                if(ele.getKey().data == b.data)
                    parB = ele.getValue();
 
                // push children of current node
                // to queue.
                if(ele.getKey().left != null)
                    q.add(new Pair(ele.getKey().left, ele.getKey()));
 
                if(ele.getKey().right != null)
                    q.add(new Pair(ele.getKey().right, ele.getKey()));
 
                levelSize--;
 
                // If both nodes are found in
                // current level then no need
                // to traverse current level further.
                if(parA != null && parB != null)
                    break;
            }
 
            // Check if both nodes are siblings
            // or not.
            if(parA != null && parB != null)
                return parA != parB;
 
            // If one node is found in current level
            // and another is not found, then
            // both nodes are not cousins.
            if ((parA!=null && parB==null) || (parB!=null && parA==null))
                return false;
        }
 
        return false;
    }
 
    // Driver code
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.left.right.right = new Node(15);
        tree.root.right.left = new Node(6);
        tree.root.right.right = new Node(7);
        tree.root.right.left.right = new Node(8);
 
        Node Node1, Node2;
        Node1 = tree.root.left.right.right;
        Node2 = tree.root.right.left.right;
        if (tree.isCousin(tree.root, Node1, Node2))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
// This code is contributed by shubham96301


Python3
# Python3 program to check if two
# Nodes in a binary tree are cousins
# using level-order traversals
 
# A Binary Tree Node
class Node: 
     
    def __init__(self, item):
        self.data = item
        self.left = None
        self.right = None
 
# Returns True if a and b
# are cousins, otherwise False.
def isCousin(root, a, b):
  
    if root == None:
        return False
 
    # To store parent of node a.
    parA = None
 
    # To store parent of node b.
    parB = None
 
    # queue to perform level order
    # traversal. Each element of queue
    # is a pair of node and its parent.
    q = []
 
    # Dummy node to act like
    # parent of root node.
    tmp = Node(-1)
 
    # Push root to queue.
    q.append((root, tmp))
     
    while len(q) > 0: 
 
        # find number of elements in
        # current level.
        levSize = len(q)
        while levSize: 
 
            ele = q.pop(0)
 
            # check if current node is
            # node a or node b or not.
            if ele[0].data == a.data: 
                parA = ele[1]
              
            if ele[0].data == b.data: 
                parB = ele[1]
 
            # push children of
            # current node to queue.
            if ele[0].left: 
                q.append((ele[0].left, ele[0]))
              
            if ele[0].right: 
                q.append((ele[0].right, ele[0]))
            levSize -= 1
 
            # If both nodes are found in
            # current level then no need
            # to traverse current level further.
            if parA and parB:
                break
 
        # Check if both nodes
        # are siblings or not.
        if parA and parB: 
            return parA != parB
 
        # If one node is found in current level
        # and another is not found, then
        # both nodes are not cousins.
        if (parA and not parB) or (parB and not parA):
            return False
          
    return False
  
# Driver Code
if __name__ == '__main__':
 
    root = Node(1)
    root.left = Node(2)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.left.right.right = Node(15)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.right.left.right = Node(8)
 
    Node1 = root.left.left
    Node2 = root.right.right
 
    if isCousin(root, Node1, Node2):
        print('Yes')
    else:
        print('No')
         
# This code is contributed by Rituraj Jain


C#
// C# program to check if two Nodes in
// a binary tree are cousins
// using level-order traversals
using System;
using System.Collections.Generic;
 
// User defined node class
public class Node
{
    public int data;
    public Node left, right;
 
    // Constructor to create a new tree node
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
// User defined pair class
public class Pair
{
 
    public Node first, second;
 
    // Constructor to create a new tree node
    public Pair(Node first, Node second)
    {
        this.first = first;
        this.second = second;
    }
}
 
class BinaryTree
{
    Node root;
 
    // Returns true if a and b are cousins,
    // otherwise false.
    Boolean isCousin(Node node, Node a, Node b)
    {
        if(node == null)
            return false;
         
        // To store parent of node a.
        Node parA = null;
 
        // To store parent of node b.
        Node parB = null;
 
        // queue to perform level order
        // traversal. Each element of
        // queue is a pair of node and
        // its parent.
        Queue q = new Queue ();
 
        // Dummy node to act like parent
        // of root node.
        Node tmp = new Node(-1);
 
        // To store front element of queue.
        Pair ele;
 
        // Push root to queue.
        q.Enqueue(new Pair (node, tmp));
 
        int levelSize;
 
        while(q.Count>0)
        {
 
            // find number of elements in
            // current level.
            levelSize = q.Count;
            while(levelSize != 0)
            {
                ele = q.Peek();
                q.Dequeue();
 
                // check if current node is node a
                // or node b or not.
                if(ele.first.data == a.data)
                    parA = ele.second;
 
                if(ele.first.data == b.data)
                    parB = ele.second;
 
                // push children of current node
                // to queue.
                if(ele.first.left != null)
                    q.Enqueue(new Pair(ele.first.left, ele.first));
 
                if(ele.first.right != null)
                    q.Enqueue(new Pair(ele.first.right, ele.first));
 
                levelSize--;
 
                // If both nodes are found in
                // current level then no need
                // to traverse current level further.
                if(parA != null && parB != null)
                    break;
            }
 
            // Check if both nodes are siblings
            // or not.
            if(parA != null && parB != null)
                return parA != parB;
 
            // If one node is found in current level
            // and another is not found, then
            // both nodes are not cousins.
            if ((parA != null && parB == null) || (parB != null && parA == null))
                return false;
        }
 
        return false;
    }
 
    // Driver code
    public static void Main(String []args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.left.right.right = new Node(15);
        tree.root.right.left = new Node(6);
        tree.root.right.right = new Node(7);
        tree.root.right.left.right = new Node(8);
 
        Node Node1, Node2;
        Node1 = tree.root.left.right.right;
        Node2 = tree.root.right.left.right;
        if (tree.isCousin(tree.root, Node1, Node2))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by Arnab Kundu


Javascript


输出:
Yes

时间复杂度: O(n)
辅助空间: O(n)