📜  Python – tensorflow.math.xdivy()

📅  最后修改于: 2022-05-13 01:54:47.497000             🧑  作者: Mango

Python – tensorflow.math.xdivy()

TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。

xdivy()用于按元素计算 x/y。如果 x==0,则返回 0。

示例 1:

Python3
# importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([ -5, -7, 2, 0, 7], dtype = tf.float64)
b = tf.constant([ 1, 3, 9, 4, 7], dtype = tf.float64)
  
# Printing the input tensor
print('a: ', a)
print('b: ', b)
  
# Calculating result
res = tf.math.xdivy(a, b)
  
# Printing the result
print('Result: ', res)


Python3
# importing the library
import tensorflow as tf
import numpy as np
  
# Initializing the input tensor
a = tf.constant([ -5, -7, 2, 5, 7], dtype = tf.float64)
b = tf.constant([ 0, 3, 9, 4, np.inf], dtype = tf.float64)
  
# Printing the input tensor
print('a: ', a)
print('b: ', b)
  
# Calculating result
res = tf.math.xdivy(a, b)
  
# Printing the result
print('Result: ', res)


输出:

a:  tf.Tensor([-5. -7.  2.  0.  7.], shape=(5, ), dtype=float64)
b:  tf.Tensor([1. 3. 9. 4. 7.], shape=(5, ), dtype=float64)
Result:  tf.Tensor([-5.         -2.33333333  0.22222222  0.          1.        ], shape=(5, ), dtype=float64)



示例 2:

Python3

# importing the library
import tensorflow as tf
import numpy as np
  
# Initializing the input tensor
a = tf.constant([ -5, -7, 2, 5, 7], dtype = tf.float64)
b = tf.constant([ 0, 3, 9, 4, np.inf], dtype = tf.float64)
  
# Printing the input tensor
print('a: ', a)
print('b: ', b)
  
# Calculating result
res = tf.math.xdivy(a, b)
  
# Printing the result
print('Result: ', res)

输出:

a:  tf.Tensor([-5. -7.  2.  5.  7.], shape=(5, ), dtype=float64)
b:  tf.Tensor([ 0.  3.  9.  4. inf], shape=(5, ), dtype=float64)
Result:  tf.Tensor([       -inf -2.33333333  0.22222222  1.25        0.        ], shape=(5, ), dtype=float64)