📌  相关文章
📜  根据条件选择pandas DataFrame中的行

📅  最后修改于: 2022-05-13 01:54:29.455000             🧑  作者: Mango

根据条件选择pandas DataFrame中的行

让我们看看如何根据 Pandas DataFrame 中的某些条件选择行。

使用'>', '=', '=', '<=', '!='运算符根据特定列值选择行。

代码#1:使用基本方法从给定数据框中选择“百分比”大于 80 的所有行。

# importing pandas
import pandas as pd
  
record = {
  
 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
 'Age': [21, 19, 20, 18, 17, 21],
 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
 'Percentage': [88, 92, 95, 70, 65, 78] }
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
# selecting rows based on condition
rslt_df = dataframe[dataframe['Percentage'] > 80]
  
print('\nResult dataframe :\n', rslt_df)

输出 :

代码#2:使用loc[]从给定数据框中选择“百分比”大于 80 的所有行。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Percentage'] > 80]
  
print('\nResult dataframe :\n', rslt_df)

输出 :

代码#3:使用loc[]从给定数据框中选择“百分比”不等于 95 的所有行。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Percentage'] != 95]
  
print('\nResult dataframe :\n', rslt_df)

输出 :

使用数据框的isin()方法选择列值存在于列表中的那些行。

代码#1:使用基本方法从给定数据框中选择选项列表中存在“Stream”的所有行。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Commerce']
  
# selecting rows based on condition
rslt_df = dataframe[dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)

输出 :

代码#2:使用loc[]从给定数据框中选择选项列表中存在“Stream”的所有行。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Commerce']
  
# selecting rows based on condition
rslt_df = dataframe.loc[dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)

输出 :

代码#3:使用.loc[]从给定数据框中选择选项列表中不存在“Stream”的所有行。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe.loc[~dataframe['Stream'].isin(options)]
  
print('\nresult dataframe :\n', rslt_df)

输出 :

使用'&'运算符根据多列条件选择行。

代码 #1:使用基本方法从给定数据框中选择“年龄”等于 21 并且“流”出现在选项列表中的所有行。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe[(dataframe['Age'] == 21) &
          dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)

输出 :

代码#2:从给定数据框中选择“年龄”等于21并且“流”出现在选项列表中的所有行.loc[]。

# importing pandas
import pandas as pd
  
record = {
  'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
  'Age': [21, 19, 20, 18, 17, 21],
  'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
  'Percentage': [88, 92, 95, 70, 65, 78]}
  
# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])
  
print("Given Dataframe :\n", dataframe) 
  
options = ['Math', 'Science']
  
# selecting rows based on condition
rslt_df = dataframe.loc[(dataframe['Age'] == 21) &
              dataframe['Stream'].isin(options)]
  
print('\nResult dataframe :\n', rslt_df)

输出 :