Python – tensorflow.raw_ops.Acos()
TensorFlow 是由谷歌设计的开源Python库,用于开发机器学习模型和深度学习神经网络。 TensorFlow raw_ops 提供对所有 TensorFlow 操作的低级访问。 Acos() 用于查找 x 的元素明智 acos。
Syntax: tf.raw_ops.Acos(x, name)
Arguments:
- x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64.
- name(optional): It’s defines the name for the operation.
Returns:
It returns a tensor of same dtype as x.
注意:它只接受关键字参数。
示例 1:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([.2, .5, .7, 1], dtype=tf.float64)
# Printing the input tensor
print('Input: ', a)
# Calculating Acos
res = tf.raw_ops.Acos(x=a)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
# Initializing the input tensor
a = tf.constant([.2, .5, .7, 1], dtype=tf.float64)
# Calculating Acos
res = tf.raw_ops.Acos(x=a)
# Plotting the graph
plt.plot(a, res, color='green')
plt.title('tensorflow.raw_ops.Acos')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()
输出:
Input: tf.Tensor([0.2 0.5 0.7 1. ], shape=(4,), dtype=float64)
Result: tf.Tensor([1.36943841 1.04719755 0.79539883 0. ], shape=(4,), dtype=float64)
示例 2:可视化
Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
# Initializing the input tensor
a = tf.constant([.2, .5, .7, 1], dtype=tf.float64)
# Calculating Acos
res = tf.raw_ops.Acos(x=a)
# Plotting the graph
plt.plot(a, res, color='green')
plt.title('tensorflow.raw_ops.Acos')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()
输出: