📜  Python – tensorflow.raw_ops.Atanh()

📅  最后修改于: 2022-05-13 01:54:39.654000             🧑  作者: Mango

Python – tensorflow.raw_ops.Atanh()

TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。 TensorFlow raw_ops 提供对所有 TensorFlow 操作的低级访问。 Atanh()用于查找 x 的元素级反双曲正切。

注意:它只接受关键字参数。

示例 1:

Python3
# Importing the library
import tensorflow as tf
  
# Initializing the input tensor
a = tf.constant([.1, .2, .3, .4, .5], dtype = tf.float64)
  
# Printing the input tensor
print('Input: ', a)
  
# Calculating inverse hyperbolic tangent
res = tf.raw_ops.Atanh(x = a)
  
# Printing the result
print('Result: ', res)


Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
  
# Initializing the input tensor
a = tf.constant([.1, .2, .3, .4, .5], dtype = tf.float64)
  
# Calculating inverse hyperbolic tangent
res = tf.raw_ops.Atanh(x = a)
  
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Atanh')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()


输出:

Input:  tf.Tensor([0.1 0.2 0.3 0.4 0.5], shape=(5, ), dtype=float64)
Result:  tf.Tensor([0.10033535 0.20273255 0.3095196  0.42364893 0.54930614], shape=(5, ), dtype=float64)


示例 2:可视化

Python3

# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
  
# Initializing the input tensor
a = tf.constant([.1, .2, .3, .4, .5], dtype = tf.float64)
  
# Calculating inverse hyperbolic tangent
res = tf.raw_ops.Atanh(x = a)
  
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Atanh')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()

输出: