Python – tensorflow.raw_ops.Log()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。 TensorFlow raw_ops 提供对所有 TensorFlow 操作的低级访问。 Log()用于查找 x 的元素对数。
Syntax: tf.raw_ops.Log(x, name)
Parameters:
- x: It’s the input tensor. Allowed dtype for this tensor are bfloat16, half, float32, float64, complex64, complex128.
- name(optional): It’s defines the name for the operation.
Returns: It returns a tensor of same dtype as x.
注意:它只接受关键字参数。
示例 1:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
# Printing the input tensor
print('Input: ', a)
# Calculating logarithm
res = tf.raw_ops.Log(x = a)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
# Calculating logarithm
res = tf.raw_ops.Log(x = a)
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Log')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()
输出:
Input: tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
Result: tf.Tensor([0. 0.69314718 1.09861229 1.38629436 1.60943791], shape=(5, ), dtype=float64)
示例 2:可视化
Python3
# importing the library
import tensorflow as tf
import matplotlib.pyplot as plt
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype = tf.float64)
# Calculating logarithm
res = tf.raw_ops.Log(x = a)
# Plotting the graph
plt.plot(a, res, color ='green')
plt.title('tensorflow.raw_ops.Log')
plt.xlabel('Input')
plt.ylabel('Result')
plt.show()
输出: