📜  Python – tensorflow.math.igamma()

📅  最后修改于: 2022-05-13 01:55:27.741000             🧑  作者: Mango

Python – tensorflow.math.igamma()

TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。

igamma()用于计算下正则化不完全 Gamma函数P(a, x)。 P(a, x) 定义为:

其中 gamma(a, x) 是下不完全 Gamma函数,定义为:

示例 1:

Python3
# importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([7, 8, 13, 11], dtype = tf.float64)
b = tf.constant([2, 8, 14, 5],  dtype = tf.float64)
 
# Printing the input tensor
print('a: ', a)
print('b: ', b)
 
# Calculating the result
res = tf.math.igamma(a, b)
 
# Printing the result
print('Result: ', res)


Python3
# Importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([2, 8, 14, 5], dtype = tf.float32)
b = tf.constant([7, 8, 13, 11],  dtype = tf.float32)
 
# Printing the input tensor
print('a: ', a)
print('b: ', b)
 
# Calculating the result
res = tf.math.igamma(a, b)
 
# Printing the result
print('Result: ', res)


输出:

a:  tf.Tensor([ 7.  8. 13. 11.], shape=(4, ), dtype=float64)
b:  tf.Tensor([ 2.  8. 14.  5.], shape=(4, ), dtype=float64)
Result:  tf.Tensor([0.00453381 0.54703919 0.64154158 0.01369527], shape=(4, ), dtype=float64)

示例 2:

Python3

# Importing the library
import tensorflow as tf
 
# Initializing the input tensor
a = tf.constant([2, 8, 14, 5], dtype = tf.float32)
b = tf.constant([7, 8, 13, 11],  dtype = tf.float32)
 
# Printing the input tensor
print('a: ', a)
print('b: ', b)
 
# Calculating the result
res = tf.math.igamma(a, b)
 
# Printing the result
print('Result: ', res)

输出:

a:  tf.Tensor([ 2.  8. 14.  5.], shape=(4, ), dtype=float32)
b:  tf.Tensor([ 7.  8. 13. 11.], shape=(4, ), dtype=float32)
Result:  tf.Tensor([0.9927049  0.5470391  0.42695415 0.9848954 ], shape=(4, ), dtype=float32)