像二进制搜索一样,跳转搜索是一种用于排序数组的搜索算法。基本思想是通过以固定步骤向前跳或跳过某些元素来代替搜索所有元素来检查更少的元素(与线性搜索相比)。
例如,假设我们有一个大小为n的数组arr []和块(待跳)大小为m。然后,我们在索引arr [0],arr [m],arr [2m] ….. arr [km]等处进行搜索。一旦找到间隔(arr [km]
步骤1:从索引0跳到索引4;
步骤2:从索引4跳至索引8;
步骤3:从索引8跳到索引12;
第4步:由于索引12处的元素大于55,因此我们将后退一步以进入索引8。
步骤5:从索引8执行线性搜索,以获取元素55。
要跳过的最佳块大小是多少?
在最坏的情况下,我们必须执行n / m次跳转,并且如果最后一次检查的值大于要搜索的元素,则对于线性搜索,我们将执行m-1个比较。因此,最坏情况下的比较总数为((n / m)+ m-1)。当m =√n时,函数的值((n / m)+ m-1)将最小。因此,最佳步长为m = √n。
C++
// C++ program to implement Jump Search
#include
using namespace std;
int jumpSearch(int arr[], int x, int n)
{
// Finding block size to be jumped
int step = sqrt(n);
// Finding the block where element is
// present (if it is present)
int prev = 0;
while (arr[min(step, n)-1] < x)
{
prev = step;
step += sqrt(n);
if (prev >= n)
return -1;
}
// Doing a linear search for x in block
// beginning with prev.
while (arr[prev] < x)
{
prev++;
// If we reached next block or end of
// array, element is not present.
if (prev == min(step, n))
return -1;
}
// If element is found
if (arr[prev] == x)
return prev;
return -1;
}
// Driver program to test function
int main()
{
int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610 };
int x = 55;
int n = sizeof(arr) / sizeof(arr[0]);
// Find the index of 'x' using Jump Search
int index = jumpSearch(arr, x, n);
// Print the index where 'x' is located
cout << "\nNumber " << x << " is at index " << index;
return 0;
}
// Contributed by nuclode
Java
// Java program to implement Jump Search.
public class JumpSearch
{
public static int jumpSearch(int[] arr, int x)
{
int n = arr.length;
// Finding block size to be jumped
int step = (int)Math.floor(Math.sqrt(n));
// Finding the block where element is
// present (if it is present)
int prev = 0;
while (arr[Math.min(step, n)-1] < x)
{
prev = step;
step += (int)Math.floor(Math.sqrt(n));
if (prev >= n)
return -1;
}
// Doing a linear search for x in block
// beginning with prev.
while (arr[prev] < x)
{
prev++;
// If we reached next block or end of
// array, element is not present.
if (prev == Math.min(step, n))
return -1;
}
// If element is found
if (arr[prev] == x)
return prev;
return -1;
}
// Driver program to test function
public static void main(String [ ] args)
{
int arr[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610};
int x = 55;
// Find the index of 'x' using Jump Search
int index = jumpSearch(arr, x);
// Print the index where 'x' is located
System.out.println("\nNumber " + x +
" is at index " + index);
}
}
Python3
# Python3 code to implement Jump Search
import math
def jumpSearch( arr , x , n ):
# Finding block size to be jumped
step = math.sqrt(n)
# Finding the block where element is
# present (if it is present)
prev = 0
while arr[int(min(step, n)-1)] < x:
prev = step
step += math.sqrt(n)
if prev >= n:
return -1
# Doing a linear search for x in
# block beginning with prev.
while arr[int(prev)] < x:
prev += 1
# If we reached next block or end
# of array, element is not present.
if prev == min(step, n):
return -1
# If element is found
if arr[int(prev)] == x:
return prev
return -1
# Driver code to test function
arr = [ 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610 ]
x = 55
n = len(arr)
# Find the index of 'x' using Jump Search
index = jumpSearch(arr, x, n)
# Print the index where 'x' is located
print("Number" , x, "is at index" ,"%.0f"%index)
# This code is contributed by "Sharad_Bhardwaj".
C#
// C# program to implement Jump Search.
using System;
public class JumpSearch
{
public static int jumpSearch(int[] arr, int x)
{
int n = arr.Length;
// Finding block size to be jumped
int step = (int)Math.Floor(Math.Sqrt(n));
// Finding the block where element is
// present (if it is present)
int prev = 0;
while (arr[Math.Min(step, n)-1] < x)
{
prev = step;
step += (int)Math.Floor(Math.Sqrt(n));
if (prev >= n)
return -1;
}
// Doing a linear search for x in block
// beginning with prev.
while (arr[prev] < x)
{
prev++;
// If we reached next block or end of
// array, element is not present.
if (prev == Math.Min(step, n))
return -1;
}
// If element is found
if (arr[prev] == x)
return prev;
return -1;
}
// Driver program to test function
public static void Main()
{
int[] arr = { 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610};
int x = 55;
// Find the index of 'x' using Jump Search
int index = jumpSearch(arr, x);
// Print the index where 'x' is located
Console.Write("Number " + x +
" is at index " + index);
}
}
PHP
= $n)
return -1;
}
// Doing a linear search for x in block
// beginning with prev.
while ($arr[$prev] < $x)
{
$prev++;
// If we reached next block or end of
// array, element is not present.
if ($prev == min($step, $n))
return -1;
}
// If element is found
if ($arr[$prev] == $x)
return $prev;
return -1;
}
// Driver program to test function
$arr = array( 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, 377, 610 );
$x = 55;
$n = sizeof($arr) / sizeof($arr[0]);
// Find the index of '$x' using Jump Search
$index = jumpSearch($arr, $x, $n);
// Print the index where '$x' is located
echo "Number ".$x." is at index " .$index;
return 0;
?>
Javascript
输出:
Number 55 is at index 10
时间复杂度:O(√n)
辅助空间:O(1)
要点:
- 仅适用于排序的数组。
- 要跳转的块的最佳大小为(√n)。这使得跳转搜索的时间复杂度为O(√n)。
- 跳转搜索的时间复杂度介于线性搜索((O(n))和二进制搜索(O(Log n))之间。
- 二进制搜索比跳转搜索更好,但是跳转搜索的优势是我们仅回溯一次(二进制搜索可能需要最多O(Log n)个跳转,请考虑以下情况:要搜索的元素是最小元素或小于元素最小的)。因此,在二进制搜索成本很高的系统中,我们使用跳转搜索。