📜  打印矩阵链乘法(一种空间优化的解决方案)

📅  最后修改于: 2021-04-27 05:04:21             🧑  作者: Mango

先决条件:动态编程|集合8(矩阵链乘法)
给定一系列矩阵,找到将这些矩阵相乘的最有效方法。问题实际上不是执行乘法,而是仅决定执行乘法的顺序。

因为矩阵乘法是关联的,所以我们有很多选择可以乘法矩阵链。换句话说,无论我们如何对产品加上括号,结果都是一样的。例如,如果我们有四个矩阵A,B,C和D,则将有:

(ABC)D = (AB)(CD) = A(BCD) = ....

但是,括号内乘积的顺序会影响计算乘积或效率所需的简单算术运算的数量。例如,假设A为10×30矩阵,B为30×5矩阵,C为5×60矩阵。然后,

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations
    A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations.

显然,第一个括号需要较少的操作。

给定表示矩阵链的数组p [],使第i个矩阵Ai的尺寸为p [i-1] xp [i]。我们需要编写一个函数MatrixChainOrder(),该函数应返回乘法链所需的最小乘法数。

Input:  p[] = {40, 20, 30, 10, 30}  
  Output: Optimal parenthesization is  ((A(BC))D)
          Optimal cost of parenthesization is 26000
  There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
  Let the input 4 matrices be A, B, C, and D.  The minimum number of 
  multiplications are obtained by putting the parenthesis in the following way
  (A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30

  Input: p[] = {10, 20, 30, 40, 30} 
  Output: Optimal parenthesization is (((AB)C)D)
          Optimal cost of parenthesization is 30000
  There are 4 matrices of dimensions 10x20, 20x30, 30x40 and 40x30. 
  Let the input 4 matrices be A, B, C, and D.  The minimum number of 
  multiplications are obtained by putting the parenthesis in the following way
  ((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30

  Input: p[] = {10, 20, 30}  
  Output: Optimal parenthesization is (AB)
          Optimal cost of parenthesization is 6000
  There are only two matrices of dimensions 10x20 and 20x30. So there 
  is only one way to multiply the matrices, the cost of which is 10*20*30

这个问题主要是寻找矩阵链乘法的最优成本的扩展。在这里,我们还需要打印括号。

我们已经在使用两个矩阵的帖子中讨论了一种解决方案。在这篇文章中,讨论了使用单个矩阵的空间优化解决方案。
1)为了找到最佳成本,我们创建一个矩阵,该矩阵仅填充上三角,不使用其余单元。
2)想法是使用同一矩阵的下三角部分(未使用)来存储括号。
想法是在m [j] [i]处存储每个子表达式(i,j)的最佳断点,并在m [i] [j]处存储最佳成本。

下面是上述步骤的实现。

C++
// A space optimized C++ program to print optimal
// parenthesization in matrix chain multiplication.
#include
using namespace std;
 
// Function for printing the optimal
// parenthesization of a matrix chain product
void printParenthesis(int i, int j, int n,
                      int *bracket, char &name)
{
    // If only one matrix left in current segment
    if (i == j)
    {
        cout << name++;
        return;
    }
 
    cout << "(";
 
    // Recursively put brackets around subexpression
    // from i to bracket[j][i].
    // Note that "*((bracket+j*n)+i)" is similar to
    // bracket[j][i]
    printParenthesis(i, *((bracket+j*n)+i), n,
                     bracket, name);
 
    // Recursively put brackets around subexpression
    // from bracket[j][i] + 1 to i.
    printParenthesis(*((bracket+j*n)+i) + 1, j,
                     n, bracket, name);
    cout << ")";
}
 
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
// Please refer below article for details of this
// function
// https://goo.gl/k6EYKj
void matrixChainOrder(int p[], int n)
{
    /* For simplicity of the program, one extra
       row and one extra column are allocated in
        m[][]. 0th row and 0th column of m[][]
        are not used */
    int m[n][n];
 
    /* m[i,j] = Minimum number of scalar multiplications
    needed to compute the matrix A[i]A[i+1]...A[j] =
    A[i..j] where dimension of A[i] is p[i-1] x p[i] */
 
    // cost is zero when multiplying one matrix.
    for (int i=1; i


Java
// A space optimized Java program to print optimal
// parenthesization in matrix chain multiplication.
import java.util.*;
 
class GFG
{
 
    static char name;
 
    // Function for printing the optimal
    // parenthesization of a matrix chain product
    static void printParenthesis(int i, int j, int n, int[][] bracket)
    {
        // If only one matrix left in current segment
        if (i == j)
        {
            System.out.print(name++);
            return;
        }
 
        System.out.print('(');
 
        // Recursively put brackets around subexpression
        // from i to bracket[j][i].
        // Note that "*((bracket+j*n)+i)" is similar to
        // bracket[i][j]
        printParenthesis(i, bracket[j][i], n, bracket);
 
        // Recursively put brackets around subexpression
        // from bracket[j][i] + 1 to i.
        printParenthesis(bracket[j][i] + 1, j, n, bracket);
 
        System.out.print(')');
    }
 
    // Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
    // Please refer below article for details of this
    // function
    // https://goo.gl/k6EYKj
    static void matrixChainOrder(int[] p, int n)
    {
 
        /*
        * For simplicity of the program, one extra row and one extra column are
        * allocated in m[][]. 0th row and 0th column of m[][] are not used
        */
        int[][] m = new int[n][n];
 
        /*
        * m[i,j] = Minimum number of scalar multiplications needed to compute the
        * matrix A[i]A[i+1]...A[j] = A[i..j] where dimension of A[i] is p[i-1] x p[i]
        */
 
        // cost is zero when multiplying one matrix.
        for (int L = 2; L < n; L++)
        {
            for (int i = 1; i < n - L + 1; i++)
            {
                int j = i + L - 1;
                m[i][j] = Integer.MAX_VALUE;
                for (int k = i; k <= j - 1; k++)
                {
 
                    // q = cost/scalar multiplications
                    int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
                    if (q < m[i][j])
                    {
                        m[i][j] = q;
 
                        // Each entry m[j,ji=k shows
                        // where to split the product arr
                        // i,i+1....j for the minimum cost.
                        m[j][i] = k;
                    }
                }
            }
        }
 
        // The first matrix is printed as 'A', next as 'B',
        // and so on
        name = 'A';
 
        System.out.print("Optimal Parenthesization is: ");
        printParenthesis(1, n - 1, n, m);
        System.out.print("\nOptimal Cost is :" + m[1][n - 1]);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 40, 20, 30, 10, 30 };
        int n = arr.length;
        matrixChainOrder(arr, n);
    }
}
 
// This code is contributed by
// sanjeev2552


Python3
# A space optimized python3 program to
# print optimal parenthesization in
# matrix chain multiplication.
 
def printParenthesis(m, j, i ):
 
    # Displaying the parenthesis.
    if j == i:
 
        # The first matrix is printed as
        # 'A', next as 'B', and so on
        print(chr(65 + j), end = "")
        return;
    else:
        print("(", end = "")
 
        # Passing (m, k, i) instead of (s, i, k)
        printParenthesis(m, m[j][i] - 1, i)
 
        # (m, j, k+1) instead of (s, k+1, j)
        printParenthesis(m, j, m[j][i])
        print (")", end = "" )
 
def matrixChainOrder(p, n):
 
    # Creating a matrix of order
    # n*n in the memory.
    m = [[0 for i in range(n)]
            for i in range (n)]
 
    for l in range (2, n + 1):
        for i in range (n - l + 1):
            j = i + l - 1
 
            # Initializing infinity value.
            m[i][j] = float('Inf')
            for k in range (i, j):
                q = (m[i][k] + m[k + 1][j] +
                    (p[i] * p[k + 1] * p[j + 1]));
                if (q < m[i][j]):
                    m[i][j] = q
 
                    # Storing k value in opposite index.
                    m[j][i] = k + 1
    return m;
 
# Driver Code
arr = [40, 20, 30, 10, 30]
n = len(arr) - 1
 
m = matrixChainOrder(arr, n) # Forming the matrix m
 
print("Optimal Parenthesization is: ", end = "")
 
# Passing the index of the bottom left
# corner of the 'm' matrix instead of
# passing the index of the top right
# corner of the 's' matrix as we used
# to do earlier. Everything is just opposite
# as we are using the bottom half of the
# matrix so assume everything opposite even
# the index, take m[j][i].
printParenthesis(m, n - 1, 0)
print("\nOptimal Cost is :", m[0][n - 1])
 
# This code is contributed by Akash Gupta.


C#
// A space optimized C# program to print optimal
// parenthesization in matrix chain multiplication.
using System;
 
class GFG{
 
static char name;
 
// Function for printing the optimal
// parenthesization of a matrix chain product
static void printParenthesis(int i, int j,
                             int n, int[,] bracket)
{
     
    // If only one matrix left in current segment
    if (i == j)
    {
        Console.Write(name++);
        return;
    }
 
    Console.Write('(');
 
    // Recursively put brackets around subexpression
    // from i to bracket[j,i].
    // Note that "*((bracket+j*n)+i)" is similar to
    // bracket[i,j]
    printParenthesis(i, bracket[j, i], n, bracket);
 
    // Recursively put brackets around subexpression
    // from bracket[j,i] + 1 to i.
    printParenthesis(bracket[j, i] + 1, j, n, bracket);
 
    Console.Write(')');
}
 
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
// Please refer below article for details of this
// function
// https://goo.gl/k6EYKj
static void matrixChainOrder(int[] p, int n)
{
 
    /*
    * For simplicity of the program, one extra
    * row and one extra column are
    * allocated in m[,]. 0th row and 0th
    * column of m[,] are not used
    */
    int[,] m = new int[n, n];
 
    /*
    * m[i,j] = Minimum number of scalar
    * multiplications needed to compute the
    * matrix A[i]A[i+1]...A[j] = A[i..j]
    * where dimension of A[i] is p[i-1] x p[i]
    */
 
    // Cost is zero when multiplying one matrix.
    for(int L = 2; L < n; L++)
    {
        for(int i = 1; i < n - L + 1; i++)
        {
            int j = i + L - 1;
            m[i, j] = int.MaxValue;
             
            for(int k = i; k <= j - 1; k++)
            {
                 
                // q = cost/scalar multiplications
                int q = m[i, k] + m[k + 1, j] +
                        p[i - 1] * p[k] * p[j];
                         
                if (q < m[i, j])
                {
                    m[i, j] = q;
 
                    // Each entry m[j,ji=k shows
                    // where to split the product arr
                    // i,i+1....j for the minimum cost.
                    m[j, i] = k;
                }
            }
        }
    }
 
    // The first matrix is printed as 'A', next as 'B',
    // and so on
    name = 'A';
 
    Console.Write("Optimal Parenthesization is: ");
    printParenthesis(1, n - 1, n, m);
    Console.Write("\nOptimal Cost is :" + m[1, n - 1]);
}
 
// Driver Code
public static void Main(String[] args)
{
    int[] arr = { 40, 20, 30, 10, 30 };
    int n = arr.Length;
     
    matrixChainOrder(arr, n);
}
}
 
// This code is contributed by Princi Singh


输出:
Optimal Parenthesization is : ((A(BC))D)
Optimal Cost is : 26000





时间复杂度: O(n ^ 3)
辅助空间: O(n ^ 2):渐近值保持不变,但是我们将辅助空间减小了一半。