我们在平面中获得了n个点的数组,问题是找出数组中最接近的点对。在许多应用中都会出现此问题。例如,在空中交通管制中,您可能想要监视过于靠近的平面,因为这可能表示可能发生碰撞。回忆以下关于两个点p和q之间距离的公式。
蛮力解为O(n ^ 2),计算每对之间的距离并返回最小值。我们可以使用分而治之策略计算O(nLogn)时间中的最小距离。在这篇文章中,讨论了O(nx(Logn)^ 2)方法。我们将在另一篇文章中讨论O(nLogn)方法。
算法
以下是O(n(Logn)^ 2)算法的详细步骤。
输入: n个点组成的数组P []
输出:给定数组中两点之间的最小距离。
作为预处理步骤,根据x坐标对输入数组进行排序。
1)在排序数组中找到中间点,我们可以将P [n / 2]作为中间点。
2)将给定数组分成两半。第一个子数组包含从P [0]到P [n / 2]的点。第二个子数组包含从P [n / 2 + 1]到P [n-1]的点。
3)递归地找到两个子数组中的最小距离。设距离为dl和dr。找出dl和dr的最小值。设最小值为d。
4)从以上3个步骤中,我们得到最小距离的上限d。现在我们需要考虑成对,使得成对的一个点从左半边开始,另一个点从右半边开始。考虑穿过P [n / 2]的垂直线,并找到x坐标比d靠近中间垂直线的所有点。建立所有这些点的数组strip []。
5)根据y坐标对数组strip []进行排序。此步骤为O(nLogn)。可以通过递归排序和合并将其优化为O(n)。
6)在strip []中找到最小的距离。这很棘手。从第一眼看,这似乎是一个O(n ^ 2)步骤,但实际上是O(n)。可以从几何上证明,对于条带中的每个点,我们只需要检查其后最多7个点(请注意,条带是根据Y坐标排序的)。请参阅此以进行更多分析。
7)最后返回上一步中计算出的d和距离的最小值(第6步)
执行
以下是上述算法的实现。
C++
// A divide and conquer program in C++
// to find the smallest distance from a
// given set of points.
#include
using namespace std;
// A structure to represent a Point in 2D plane
class Point
{
public:
int x, y;
};
/* Following two functions are needed for library function qsort().
Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */
// Needed to sort array of points
// according to X coordinate
int compareX(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->x - p2->x);
}
// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->y - p2->y);
}
// A utility function to find the
// distance between two points
float dist(Point p1, Point p2)
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y)
);
}
// A Brute Force method to return the
// smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
{
float min = FLT_MAX;
for (int i = 0; i < n; ++i)
for (int j = i+1; j < n; ++j)
if (dist(P[i], P[j]) < min)
min = dist(P[i], P[j]);
return min;
}
// A utility function to find
// minimum of two float values
float min(float x, float y)
{
return (x < y)? x : y;
}
// A utility function to find the
// distance beween the closest points of
// strip of given size. All points in
// strip[] are sorted accordint to
// y coordinate. They all have an upper
// bound on minimum distance as d.
// Note that this method seems to be
// a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
float min = d; // Initialize the minimum distance as d
qsort(strip, size, sizeof(Point), compareY);
// Pick all points one by one and try the next points till the difference
// between y coordinates is smaller than d.
// This is a proven fact that this loop runs at most 6 times
for (int i = 0; i < size; ++i)
for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
if (dist(strip[i],strip[j]) < min)
min = dist(strip[i], strip[j]);
return min;
}
// A recursive function to find the
// smallest distance. The array P contains
// all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
// If there are 2 or 3 points, then use brute force
if (n <= 3)
return bruteForce(P, n);
// Find the middle point
int mid = n/2;
Point midPoint = P[mid];
// Consider the vertical line passing
// through the middle point calculate
// the smallest distance dl on left
// of middle point and dr on right side
float dl = closestUtil(P, mid);
float dr = closestUtil(P + mid, n - mid);
// Find the smaller of two distances
float d = min(dl, dr);
// Build an array strip[] that contains
// points close (closer than d)
// to the line passing through the middle point
Point strip[n];
int j = 0;
for (int i = 0; i < n; i++)
if (abs(P[i].x - midPoint.x) < d)
strip[j] = P[i], j++;
// Find the closest points in strip.
// Return the minimum of d and closest
// distance is strip[]
return min(d, stripClosest(strip, j, d) );
}
// The main function that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
qsort(P, n, sizeof(Point), compareX);
// Use recursive function closestUtil()
// to find the smallest distance
return closestUtil(P, n);
}
// Driver code
int main()
{
Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};
int n = sizeof(P) / sizeof(P[0]);
cout << "The smallest distance is " << closest(P, n);
return 0;
}
// This is code is contributed by rathbhupendra
C
// A divide and conquer program in C/C++ to find the smallest distance from a
// given set of points.
#include
#include
#include
#include
// A structure to represent a Point in 2D plane
struct Point
{
int x, y;
};
/* Following two functions are needed for library function qsort().
Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */
// Needed to sort array of points according to X coordinate
int compareX(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->x - p2->x);
}
// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->y - p2->y);
}
// A utility function to find the distance between two points
float dist(Point p1, Point p2)
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y)
);
}
// A Brute Force method to return the smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
{
float min = FLT_MAX;
for (int i = 0; i < n; ++i)
for (int j = i+1; j < n; ++j)
if (dist(P[i], P[j]) < min)
min = dist(P[i], P[j]);
return min;
}
// A utility function to find a minimum of two float values
float min(float x, float y)
{
return (x < y)? x : y;
}
// A utility function to find the distance between the closest points of
// strip of a given size. All points in strip[] are sorted according to
// y coordinate. They all have an upper bound on minimum distance as d.
// Note that this method seems to be a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
float min = d; // Initialize the minimum distance as d
qsort(strip, size, sizeof(Point), compareY);
// Pick all points one by one and try the next points till the difference
// between y coordinates is smaller than d.
// This is a proven fact that this loop runs at most 6 times
for (int i = 0; i < size; ++i)
for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
if (dist(strip[i],strip[j]) < min)
min = dist(strip[i], strip[j]);
return min;
}
// A recursive function to find the smallest distance. The array P contains
// all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
// If there are 2 or 3 points, then use brute force
if (n <= 3)
return bruteForce(P, n);
// Find the middle point
int mid = n/2;
Point midPoint = P[mid];
// Consider the vertical line passing through the middle point
// calculate the smallest distance dl on left of middle point and
// dr on right side
float dl = closestUtil(P, mid);
float dr = closestUtil(P + mid, n-mid);
// Find the smaller of two distances
float d = min(dl, dr);
// Build an array strip[] that contains points close (closer than d)
// to the line passing through the middle point
Point strip[n];
int j = 0;
for (int i = 0; i < n; i++)
if (abs(P[i].x - midPoint.x) < d)
strip[j] = P[i], j++;
// Find the closest points in strip. Return the minimum of d and closest
// distance is strip[]
return min(d, stripClosest(strip, j, d) );
}
// The main function that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
qsort(P, n, sizeof(Point), compareX);
// Use recursive function closestUtil() to find the smallest distance
return closestUtil(P, n);
}
// Driver program to test above functions
int main()
{
Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};
int n = sizeof(P) / sizeof(P[0]);
printf("The smallest distance is %f ", closest(P, n));
return 0;
}
Python3
# A divide and conquer program in Python3
# to find the smallest distance from a
# given set of points.
import math
import copy
# A class to represent a Point in 2D plane
class Point():
def __init__(self, x, y):
self.x = x
self.y = y
# A utility function to find the
# distance between two points
def dist(p1, p2):
return math.sqrt((p1.x - p2.x) *
(p1.x - p2.x) +
(p1.y - p2.y) *
(p1.y - p2.y))
# A Brute Force method to return the
# smallest distance between two points
# in P[] of size n
def bruteForce(P, n):
min_val = float('inf')
for i in range(n):
for j in range(i + 1, n):
if dist(P[i], P[j]) < min_val:
min_val = dist(P[i], P[j])
return min_val
# A utility function to find the
# distance beween the closest points of
# strip of given size. All points in
# strip[] are sorted accordint to
# y coordinate. They all have an upper
# bound on minimum distance as d.
# Note that this method seems to be
# a O(n^2) method, but it's a O(n)
# method as the inner loop runs at most 6 times
def stripClosest(strip, size, d):
# Initialize the minimum distance as d
min_val = d
# Pick all points one by one and
# try the next points till the difference
# between y coordinates is smaller than d.
# This is a proven fact that this loop
# runs at most 6 times
for i in range(size):
j = i + 1
while j < size and (strip[j].y -
strip[i].y) < min_val:
min_val = dist(strip[i], strip[j])
j += 1
return min_val
# A recursive function to find the
# smallest distance. The array P contains
# all points sorted according to x coordinate
def closestUtil(P, Q, n):
# If there are 2 or 3 points,
# then use brute force
if n <= 3:
return bruteForce(P, n)
# Find the middle point
mid = n // 2
midPoint = P[mid]
# Consider the vertical line passing
# through the middle point calculate
# the smallest distance dl on left
# of middle point and dr on right side
dl = closestUtil(P[:mid], Q, mid)
dr = closestUtil(P[mid:], Q, n - mid)
# Find the smaller of two distances
d = min(dl, dr)
# Build an array strip[] that contains
# points close (closer than d)
# to the line passing through the middle point
strip = []
for i in range(n):
if abs(Q[i].x - midPoint.x) < d:
strip.append(Q[i])
# Find the closest points in strip.
# Return the minimum of d and closest
# distance is strip[]
return min(d, stripClosest(strip, len(strip), d))
# The main function that finds
# the smallest distance.
# This method mainly uses closestUtil()
def closest(P, n):
P.sort(key = lambda point: point.x)
Q = copy.deepcopy(P)
Q.sort(key = lambda point: point.y)
# Use recursive function closestUtil()
# to find the smallest distance
return closestUtil(P, Q, n)
# Driver code
P = [Point(2, 3), Point(12, 30),
Point(40, 50), Point(5, 1),
Point(12, 10), Point(3, 4)]
n = len(P)
print("The smallest distance is",
closest(P, n))
# This code is contributed
# by Prateek Gupta (@prateekgupta10)
输出:
The smallest distance is 1.414214
时间复杂度让上述算法的时间复杂度为T(n)。让我们假设我们使用O(nLogn)排序算法。上面的算法将所有点分为两组,然后递归调用两组。划分后,它以O(n)时间找到条带,以O(nLogn)时间排序条带,最后找到O(n)时间中条带的最接近点。所以T(n)可以表示如下
T(n)= 2T(n / 2)+ O(n)+ O(nLogn)+ O(n)
T(n)= 2T(n / 2)+ O(nLogn)
T(n)= T(nx Logn x Logn)
笔记
1)通过优化上述算法的步骤5,可以将时间复杂度提高到O(nLogn)。我们很快将在另一篇文章中讨论优化的解决方案。
2)代码找到最小的距离。可以轻松修改它以找到距离最小的点。
3)代码使用快速排序,在最坏的情况下可以为O(n ^ 2)。要使上限为O(n(Logn)^ 2),可以使用O(nLogn)排序算法,例如合并排序或堆排序
参考:
http://www.cs.umd.edu/class/fall2013/cmsc451/Lects/lect10.pdf
http://www.youtube.com/watch?v=vS4Zn1a9KUc
http://www.youtube.com/watch?v=T3T7T8Ym20M
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem