📅  最后修改于: 2023-12-03 15:22:22.581000             🧑  作者: Mango
最近点对问题是求平面上距离最近的两个点之间的距离的问题。分而治之算法也可以解决这个问题。该算法将平面点集按照X坐标排序,然后将点集分成两个子集。然后对每个子集递归进行求解,最后将得到每个子集中距离最近的点对,再在子集之间找到距离最近的点对。
import math
def distance(point1, point2):
"""计算两点之间的距离"""
return math.sqrt((point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2)
def brute_force(points, left, right):
"""暴力无章地解决此问题"""
min_distance = float('inf')
for i in range(left, right):
for j in range(i + 1, right + 1):
min_distance = min(min_distance, distance(points[i], points[j]))
return min_distance
def closest_pair(points, left, right):
"""使用分而治之的方法解决最近点对问题"""
if left >= right:
return float('inf')
elif left + 1 == right:
return distance(points[left], points[right])
mid = (left + right) // 2
d1 = closest_pair(points, left, mid)
d2 = closest_pair(points, mid + 1, right)
d = min(d1, d2)
# 跨越中间线的最小距离点对
strip = []
for i in range(left, right):
if abs(points[mid][0] - points[i][0]) < d:
strip.append(points[i])
strip.sort(key=lambda x: x[1])
# 检查跨越中间线的点对的距离
for i in range(len(strip)):
for j in range(i + 1, len(strip)):
if strip[j][1] - strip[i][1] >= d:
break
d = min(d, distance(strip[i], strip[j]))
return d
if __name__ == '__main__':
points = [(1, 2), (5, 8), (2, 4), (2, 7), (6, 1), (4, 3), (3, 7)]
points = sorted(points)
print(closest_pair(points, 0, len(points) - 1))
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ClosestPair {
private static double distance(Point point1, Point point2) {
return Math.sqrt(Math.pow(point1.x - point2.x, 2) + Math.pow(point1.y - point2.y, 2));
}
private static double bruteForce(List<Point> points, int left, int right) {
double minDistance = Double.POSITIVE_INFINITY;
for (int i = left; i <= right; i++) {
for (int j = i + 1; j <= right; j++) {
minDistance = Math.min(minDistance, distance(points.get(i), points.get(j)));
}
}
return minDistance;
}
private static double closestPair(List<Point> points, int left, int right) {
if (left >= right) {
return Double.POSITIVE_INFINITY;
} else if (left + 1 == right) {
return distance(points.get(left), points.get(right));
}
int mid = (left + right) / 2;
double d1 = closestPair(points, left, mid);
double d2 = closestPair(points, mid + 1, right);
double d = Math.min(d1, d2);
// 跨越中间线的最小距离点对
List<Point> strip = new ArrayList<>();
for (int i = left; i <= right; i++) {
if (Math.abs(points.get(mid).x - points.get(i).x) < d) {
strip.add(points.get(i));
}
}
strip.sort((p1, p2) -> Integer.compare(p1.y, p2.y));
// 检查跨越中间线的点对的距离
for (int i = 0; i < strip.size(); i++) {
for (int j = i + 1; j < strip.size() && strip.get(j).y - strip.get(i).y < d; j++) {
d = Math.min(d, distance(strip.get(i), strip.get(j)));
}
}
return d;
}
public static void main(String[] args) {
List<Point> points = Arrays.asList(
new Point(1, 2),
new Point(5, 8),
new Point(2, 4),
new Point(2, 7),
new Point(6, 1),
new Point(4, 3),
new Point(3, 7)
);
points.sort((p1, p2) -> Integer.compare(p1.x, p2.x));
System.out.println(closestPair(points, 0, points.size() - 1));
}
private static class Point {
int x;
int y;
Point(int x, int y) {
this.x = x;
this.y = y;
}
}
}
最近点对问题的分而治之算法的时间复杂度为$O(n\log n)$。最复杂的操作是将点集按X坐标排序,这需要$O(n \log n)$的时间。然后算法递归处理两个子集,将会有$2T(\frac{n}{2})$的执行时间。计算跨越中间线的点对之间的距离需要$O(n)$时间。因此,整个算法的时间复杂度为$T(n) = 2T(\frac{n}{2}) + O(n \log n)$。使用主定理可以证明$T(n) = O(n\log n)$。