给定一个由N个元素组成的数组arr []和一个整数K ,任务是根据以下规则生成一个B [] :
- 将元素arr [1…N]复制N次到数组B [] 。
- 将元素arr [1…N / 2]复制2 * N次到数组B []中。
- 将元素arr [1…N / 4]复制3 * N次到数组B []中。
- 类似地,直到只剩下没有元素要复制到数组B []为止。
最后打印数组B []中的第K个最小元素。如果K超出B []的范围,则返回-1 。
例子:
Input: arr[] = {1, 2, 3}, K = 4
Output: 1
{1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 1, 1, 1, 1, 1} is the required array B[]
{1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3} in the sorted form where
1 is the 4th smallest element.
Input: arr[] = {2, 4, 5, 1}, K = 13
Output: 2
方法:
- 维护一个Count_Array,我们必须在其中存储每个元素在数组B []中出现的次数。可以通过在起始索引处添加计数并在终止索引处加上1个位置减去相同的计数来完成元素范围。
- 取计数数组的累积和。
- 维护arr []的所有元素及其在数组B []中的计数以及它们的计数,并根据元素值对它们进行排序。
- 遍历向量,并根据它们的单个计数查看哪个元素在B []中的第K个位置。
- 如果K超出B []的范围,则返回-1。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Function to return the Kth element in B[]
int solve(int Array[], int N, int K)
{
// Initialize the count Array
int count_Arr[N + 1] = { 0 };
int factor = 1;
int size = N;
// Reduce N repeatedly to half its value
while (size) {
int start = 1;
int end = size;
// Add count to start
count_Arr[1] += factor * N;
// Subtract same count after end index
count_Arr[end + 1] -= factor * N;
factor++;
size /= 2;
}
for (int i = 2; i <= N; i++)
count_Arr[i] += count_Arr[i - 1];
// Store each element of Array[] with their count
vector > element;
for (int i = 0; i < N; i++) {
element.push_back({ Array[i], count_Arr[i + 1] });
}
// Sort the elements wrt value
sort(element.begin(), element.end());
int start = 1;
for (int i = 0; i < N; i++) {
int end = start + element[i].second - 1;
// If Kth element is in range of element[i]
// return element[i]
if (K >= start && K <= end) {
return element[i].first;
}
start += element[i].second;
}
// If K is out of bound
return -1;
}
// Driver code
int main()
{
int arr[] = { 2, 4, 5, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
int K = 13;
cout << solve(arr, N, K);
return 0;
}
Java
// Java implementation of the approach
import java.util.Vector;
class GFG
{
// Pair class implementation to use Pair
static class Pair
{
private int first;
private int second;
Pair(int first, int second)
{
this.first = first;
this.second = second;
}
public int getFirst()
{
return first;
}
public int getSecond()
{
return second;
}
}
// Function to return the Kth element in B[]
static int solve(int[] Array, int N, int K)
{
// Initialize the count Array
int[] count_Arr = new int[N + 2];
int factor = 1;
int size = N;
// Reduce N repeatedly to half its value
while (size > 0)
{
int start = 1;
int end = size;
// Add count to start
count_Arr[1] += factor * N;
// Subtract same count after end index
count_Arr[end + 1] -= factor * N;
factor++;
size /= 2;
}
for (int i = 2; i <= N; i++)
count_Arr[i] += count_Arr[i - 1];
// Store each element of Array[]
// with their count
Vector element = new Vector<>();
for (int i = 0; i < N; i++)
{
Pair x = new Pair(Array[i],
count_Arr[i + 1]);
element.add(x);
}
int start = 1;
for (int i = 0; i < N; i++)
{
int end = start + element.elementAt(0).getSecond() - 1;
// If Kth element is in range of element[i]
// return element[i]
if (K >= start && K <= end)
return element.elementAt(i).getFirst();
start += element.elementAt(i).getSecond();
}
// If K is out of bound
return -1;
}
// Driver code
public static void main(String[] args)
{
int[] arr = { 2, 4, 5, 1 };
int N = arr.length;
int K = 13;
System.out.println(solve(arr, N, K));
}
}
// This code is contiributed by
// sanjeev2552
Python3
# Python3 implementation of the approach
# Function to return the Kth element in B[]
def solve(Array, N, K) :
# Initialize the count Array
count_Arr = [0]*(N + 2) ;
factor = 1;
size = N;
# Reduce N repeatedly to half its value
while (size) :
start = 1;
end = size;
# Add count to start
count_Arr[1] += factor * N;
# Subtract same count after end index
count_Arr[end + 1] -= factor * N;
factor += 1;
size //= 2;
for i in range(2, N + 1) :
count_Arr[i] += count_Arr[i - 1];
# Store each element of Array[] with their count
element = [];
for i in range(N) :
element.append(( Array[i], count_Arr[i + 1] ));
# Sort the elements wrt value
element.sort();
start = 1;
for i in range(N) :
end = start + element[i][1] - 1;
# If Kth element is in range of element[i]
# return element[i]
if (K >= start and K <= end) :
return element[i][0];
start += element[i][1];
# If K is out of bound
return -1;
# Driver code
if __name__ == "__main__" :
arr = [ 2, 4, 5, 1 ];
N = len(arr);
K = 13;
print(solve(arr, N, K));
# This code is contributed by AnkitRai01
C#
// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
// Pair class implementation to use Pair
public class Pair
{
public int first;
public int second;
public Pair(int first, int second)
{
this.first = first;
this.second = second;
}
public int getFirst()
{
return first;
}
public int getSecond()
{
return second;
}
}
// Function to return the Kth element in B[]
static int solve(int[] Array, int N, int K)
{
// Initialize the count Array
int[] count_Arr = new int[N + 2];
int factor = 1;
int size = N;
// Reduce N repeatedly to half its value
while (size > 0)
{
int end = size;
// Add count to start
count_Arr[1] += factor * N;
// Subtract same count after end index
count_Arr[end + 1] -= factor * N;
factor++;
size /= 2;
}
for (int i = 2; i <= N; i++)
count_Arr[i] += count_Arr[i - 1];
// Store each element of Array[]
// with their count
List element = new List();
for (int i = 0; i < N; i++)
{
Pair x = new Pair(Array[i],
count_Arr[i + 1]);
element.Add(x);
}
int start = 1;
for (int i = 0; i < N; i++)
{
int end = start + element[0].getSecond() - 1;
// If Kth element is in range of element[i]
// return element[i]
if (K >= start && K <= end)
return element[i].getFirst();
start += element[i].getSecond();
}
// If K is out of bound
return -1;
}
// Driver code
public static void Main(String[] args)
{
int[] arr = { 2, 4, 5, 1 };
int N = arr.Length;
int K = 13;
Console.WriteLine(solve(arr, N, K));
}
}
// This code is contributed by Rajput-Ji
输出:
2