📜  Java程序解决车站数量问题(1)

📅  最后修改于: 2023-12-03 15:32:05.630000             🧑  作者: Mango

Java程序解决车站数量问题

在交通规划中,需要考虑到车站的数量,以保证公共交通系统覆盖面广,同时又能够高效地运转。本文将介绍一个用Java程序解决车站数量问题的方法。

问题描述

某城市规划部门需要对该市的公共交通系统进行改善,提高其覆盖面和运转效率。其首要任务是确定足够的车站数量,以便乘客可以在附近轻松地访问公共交通站点。

规划部门想要计算几个因素:

  • 某两个车站之间的最短路线长度。
  • 从某个车站到达速度最快的车站所需时间。
  • 为满足旅客的需要,最少需要多少个车站。
解决方法

本问题可以通过使用Java中的图形算法来解决。

算法1:Dijkstra算法

Dijkstra算法是一个用于搜寻和查找图中最短路径的算法。它以一个起始点作为出发点,在新的点被找到的时候进行扩展,并对路径进行优化。

下面是使用Dijkstra算法计算两车站之间最短路线长度的Java代码:

import java.util.*;

public class DijkstraAlgorithm{
    private static final Graph graph = new Graph();

    public static void main(String... args) {
        Vertex start = graph.getVertex("起始点");
        Vertex end = graph.getVertex("结束点");

        DijkstraAlgorithm.findShortestPath(start);
        LinkedList<Vertex> path = DijkstraAlgorithm.getPath(end);

        System.out.println("从起始点到结束点的最短路线长度为:" + path.size());
    }
    
    public static void findShortestPath(Vertex start) {
        start.setDistance(0);
        PriorityQueue<Vertex> priorityQueue = new PriorityQueue<>();
        priorityQueue.add(start);

        while (!priorityQueue.isEmpty()) {
            Vertex vertex = priorityQueue.poll();
            for (Edge edge : vertex.getEdges()) {
                Vertex u = edge.getStart();
                Vertex v = edge.getEnd();
                double weight = edge.getWeight();
                double distanceFromStart = u.getDistance() + weight;

                if (distanceFromStart < v.getDistance()) {
                    priorityQueue.remove(v);
                    v.setDistance(distanceFromStart);
                    v.setPrevious(u);
                    priorityQueue.add(v);
                }
            }
        }
    }
    
    public static LinkedList<Vertex> getPath(Vertex end) {
        LinkedList<Vertex> path = new LinkedList<>();
        for (Vertex vertex = end; vertex != null; vertex = vertex.getPrevious()) {
            path.add(vertex);
        }
        Collections.reverse(path);
        return path;
    }
}

class Graph {
    private Set<Vertex> vertices = new HashSet<>();

    public void addVertex(Vertex vertex) {
        vertices.add(vertex);
    }

    public Vertex getVertex(String name) {
        for (Vertex vertex : vertices) {
            if (vertex.getName().equals(name)) {
                return vertex;
            }
        }
        return null;
    }
}

class Edge {
    private Vertex start;
    private Vertex end;
    private double weight;

    public Edge(Vertex start, Vertex end, double weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    public Vertex getStart() {
        return start;
    }

    public Vertex getEnd() {
        return end;
    }

    public double getWeight() {
        return weight;
    }
}

class Vertex implements Comparable<Vertex> {
    private String name;
    private List<Edge> edges = new ArrayList<>();
    private double distance = Double.MAX_VALUE;
    private Vertex previous;

    public Vertex(String name) {
        this.name = name;
    }

    public void addEdge(Edge edge) {
        edges.add(edge);
    }

    @Override
    public int compareTo(Vertex otherVertex) {
        return Double.compare(distance, otherVertex.distance);
    }

    @Override
    public String toString() {
        return name;
    }

    public String getName() {
        return name;
    }

    public List<Edge> getEdges() {
        return edges;
    }

    public double getDistance() {
        return distance;
    }

    public void setDistance(double distance) {
        this.distance = distance;
    }

    public Vertex getPrevious() {
        return previous;
    }

    public void setPrevious(Vertex previous) {
        this.previous = previous;
    }
}
算法2:Floyd算法

Floyd算法是一种用于搜索图中最短路径的算法,同时还可以计算出从一个节点到其他节点的最短路径。

下面是使用Floyd算法计算两车站之间最短路线长度的Java代码:

import java.util.*;

public class FloydAlgorithm {
    private int[][] distances;

    public static void main(String args[]) {
        FloydAlgorithm floyd = new FloydAlgorithm();
        int[][] graph = {
                {0, 3, 6, 15, 0, 0},
                {3, 0, 2, 0, 11, 0},
                {6, 2, 0, 1, 6, 8},
                {15, 0, 1, 0, 2, 5},
                {0, 11, 6, 2, 0, 3},
                {0, 0, 8, 5, 3, 0},
        };
        floyd.calculateDistances(graph);
        System.out.println(floyd.getShortestDistance(0, 5));
    }

    public void calculateDistances(int[][] matrix) {
        int n = matrix.length;
        distances = matrix.clone();

        for (int k = 0; k < n; k++) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    if (distances[i][k] + distances[k][j] < distances[i][j]) {
                        distances[i][j] = distances[i][k] + distances[k][j];
                    }
                }
            }
        }
    }

    private int getShortestDistance(int i, int j) {
        return distances[i][j];
    }
}
算法3:K-Means算法

K-Means算法是一种聚类算法,它将给定的数据集分成k个不同的组或簇。

下面是使用K-Means算法计算车站数量的Java代码:

import java.util.*;

public class KMeans {
    private static final int MAX_ITERATIONS = 100;
    private static final Map<Integer, Cluster> clusterMap = new HashMap<>();

    public static void main(String[] args) {
        List<Double[]> dataList = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            double[] coordinates = new double[2];
            coordinates[0] = Math.random();
            coordinates[1] = Math.random();
            dataList.add(coordinates);
        }

        List<Cluster> clusters = initialCluster(dataList, 3);
        assignDataToCluster(dataList, clusters);

        for (int i = 0; i < MAX_ITERATIONS; i++) {
            for (Cluster cluster : clusters) {
                double[] means = new double[2];
                for (Double[] data : cluster.getData()) {
                    means[0] += data[0];
                    means[1] += data[1];
                }
                means[0] /= cluster.getData().size();
                means[1] /= cluster.getData().size();
                cluster.setCentroid(means);
            }

            boolean isConverged = true;

            for (Double[] data : dataList) {
                int clusterNumber = getClosestClusterNumber(data, clusters);
                Cluster oldCluster = clusterMap.get(data.hashCode());
                if (clusterNumber != oldCluster.getNumber()) {
                    oldCluster.getData().remove(data);
                    clusters.get(clusterNumber).getData().add(data);
                    clusterMap.put(data.hashCode(), clusters.get(clusterNumber));
                    isConverged = false;
                }
            }

            if (isConverged) {
                break;
            }
        }

        System.out.println("最少需要 " + clusters.size() + " 个车站。");
    }

    public static List<Cluster> initialCluster(List<Double[]> dataList, int k) {
        List<Cluster> clusters = new ArrayList<>();
        for (int i = 0; i < k; i++) {
            double[] coordinates = dataList.get(i);
            Cluster cluster = new Cluster(i + 1, coordinates);
            clusters.add(cluster);
        }
        return clusters;
    }

    public static void assignDataToCluster(List<Double[]> dataList, List<Cluster> clusters) {
        for (Double[] data : dataList) {
            int clusterNumber = getClosestClusterNumber(data, clusters);
            Cluster cluster = clusters.get(clusterNumber);
            cluster.getData().add(data);
            clusterMap.put(data.hashCode(), cluster);
        }
    }

    public static int getClosestClusterNumber(Double[] data, List<Cluster> clusters) {
        double minDistance = Double.MAX_VALUE;
        int closestCluster = 0;
        for (Cluster cluster : clusters) {
            double distance = euclideanDistance(data, cluster.getCentroid());
            if (distance < minDistance) {
                minDistance = distance;
                closestCluster = cluster.getNumber() - 1;
            }
        }
        return closestCluster;
    }

    public static double euclideanDistance(Double[] a, double[] b) {
        double distance = 0;
        for (int i = 0; i < a.length; i++) {
            distance += Math.pow(a[i] - b[i], 2);
        }
        return Math.sqrt(distance);
    }
}

class Cluster {
    private int number;
    private double[] centroid;
    private List<Double[]> data = new ArrayList<>();

    public Cluster(int number, double[] centroid) {
        this.number = number;
        this.centroid = centroid;
    }

    public int getNumber() {
        return number;
    }

    public double[] getCentroid() {
        return centroid;
    }

    public void setCentroid(double[] centroid) {
        this.centroid = centroid;
    }

    public List<Double[]> getData() {
        return data;
    }
}
总结

本文介绍了三种不同的算法,分别是Dijkstra算法、Floyd算法和K-Means算法。这些算法可以在解决车站数量问题时提供帮助,可以根据具体需求选择适合的算法进行使用。