📜  双向链表上快速排序的 C++ 程序

📅  最后修改于: 2022-05-13 01:56:05.869000             🧑  作者: Mango

双向链表上快速排序的 C++ 程序

以下是数组快速排序的典型递归实现。该实现使用最后一个元素作为枢轴。

C++
/* A typical recursive implementation of Quicksort for array*/
  
/* This function takes last element as pivot, places the pivot element at its
   correct position in sorted array, and places all smaller (smaller than 
   pivot) to left of pivot and all greater elements to right of pivot */
int partition (int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
  
  
    for (int j = l; j <= h- 1; j++)
    {
        if (arr[j] <= x)
        {
            i++;
            swap (&arr[i], &arr[j]);
        }
    }
    swap (&arr[i + 1], &arr[h]);
    return (i + 1);
}
  
/* A[] --> Array to be sorted, l  --> Starting index, h  --> Ending index */
void quickSort(int A[], int l, int h)
{
    if (l < h)
    {        
        int p = partition(A, l, h); /* Partitioning index */
        quickSort(A, l, p - 1);  
        quickSort(A, p + 1, h);
    }
}


C++
// A C++ program to sort a linked list using Quicksort 
#include 
using namespace std;
  
/* a node of the doubly linked list */
class Node 
{ 
    public:
    int data; 
    Node *next; 
    Node *prev; 
}; 
  
/* A utility function to swap two elements */
void swap ( int* a, int* b ) 
{ int t = *a; *a = *b; *b = t; } 
  
// A utility function to find
// last node of linked list 
Node *lastNode(Node *root) 
{ 
    while (root && root->next) 
        root = root->next; 
    return root; 
} 
  
/* Considers last element as pivot, 
places the pivot element at its 
correct position in sorted array, 
and places all smaller (smaller than 
pivot) to left of pivot and all greater
elements to right of pivot */
Node* partition(Node *l, Node *h) 
{ 
    // set pivot as h element 
    int x = h->data; 
  
    // similar to i = l-1 for array implementation 
    Node *i = l->prev; 
  
    // Similar to "for (int j = l; j <= h- 1; j++)" 
    for (Node *j = l; j != h; j = j->next) 
    { 
        if (j->data <= x) 
        { 
            // Similar to i++ for array 
            i = (i == NULL)? l : i->next; 
  
            swap(&(i->data), &(j->data)); 
        } 
    } 
    i = (i == NULL)? l : i->next; // Similar to i++ 
    swap(&(i->data), &(h->data)); 
    return i; 
} 
  
/* A recursive implementation 
of quicksort for linked list */
void _quickSort(Node* l, Node *h) 
{ 
    if (h != NULL && l != h && l != h->next) 
    { 
        Node *p = partition(l, h); 
        _quickSort(l, p->prev); 
        _quickSort(p->next, h); 
    } 
} 
  
// The main function to sort a linked list.
// It mainly calls _quickSort() 
void quickSort(Node *head) 
{ 
    // Find last node 
    Node *h = lastNode(head); 
  
    // Call the recursive QuickSort 
    _quickSort(head, h); 
} 
  
// A utility function to print contents of arr 
void printList(Node *head) 
{ 
    while (head) 
    { 
        cout << head->data << " "; 
        head = head->next; 
    } 
    cout << endl; 
} 
  
/* Function to insert a node at the 
beginning of the Doubly Linked List */
void push(Node** head_ref, int new_data) 
{ 
    Node* new_node = new Node; /* allocate node */
    new_node->data = new_data; 
  
    /* since we are adding at the
    beginning, prev is always NULL */
    new_node->prev = NULL; 
  
    /* link the old list off the new node */
    new_node->next = (*head_ref); 
  
    /* change prev of head node to new node */
    if ((*head_ref) != NULL) (*head_ref)->prev = new_node ; 
  
    /* move the head to point to the new node */
    (*head_ref) = new_node; 
} 
  
/* Driver code */
int main() 
{ 
    Node *a = NULL; 
    push(&a, 5); 
    push(&a, 20); 
    push(&a, 4); 
    push(&a, 3); 
    push(&a, 30); 
  
    cout << "Linked List before sorting 
"; 
    printList(a); 
  
    quickSort(a); 
  
    cout << "Linked List after sorting 
"; 
    printList(a); 
  
    return 0; 
} 
  
// This code is contributed by rathbhupendra


我们可以对链表使用相同的算法吗?
以下是双向链表的 C++ 实现。这个想法很简单,我们首先找出指向最后一个节点的指针。一旦我们有了指向最后一个节点的指针,我们就可以使用指向链表的第一个和最后一个节点的指针对链表进行递归排序,类似于上面传递第一个和最后一个数组元素的索引的递归函数。链表的分区函数也类似于数组的分区。它不是返回枢轴元素的索引,而是返回一个指向枢轴元素的指针。在下面的实现中,quickSort() 只是一个包装函数,主要的递归函数是_quickSort(),类似于数组实现的quickSort()。


C++

// A C++ program to sort a linked list using Quicksort 
#include 
using namespace std;
  
/* a node of the doubly linked list */
class Node 
{ 
    public:
    int data; 
    Node *next; 
    Node *prev; 
}; 
  
/* A utility function to swap two elements */
void swap ( int* a, int* b ) 
{ int t = *a; *a = *b; *b = t; } 
  
// A utility function to find
// last node of linked list 
Node *lastNode(Node *root) 
{ 
    while (root && root->next) 
        root = root->next; 
    return root; 
} 
  
/* Considers last element as pivot, 
places the pivot element at its 
correct position in sorted array, 
and places all smaller (smaller than 
pivot) to left of pivot and all greater
elements to right of pivot */
Node* partition(Node *l, Node *h) 
{ 
    // set pivot as h element 
    int x = h->data; 
  
    // similar to i = l-1 for array implementation 
    Node *i = l->prev; 
  
    // Similar to "for (int j = l; j <= h- 1; j++)" 
    for (Node *j = l; j != h; j = j->next) 
    { 
        if (j->data <= x) 
        { 
            // Similar to i++ for array 
            i = (i == NULL)? l : i->next; 
  
            swap(&(i->data), &(j->data)); 
        } 
    } 
    i = (i == NULL)? l : i->next; // Similar to i++ 
    swap(&(i->data), &(h->data)); 
    return i; 
} 
  
/* A recursive implementation 
of quicksort for linked list */
void _quickSort(Node* l, Node *h) 
{ 
    if (h != NULL && l != h && l != h->next) 
    { 
        Node *p = partition(l, h); 
        _quickSort(l, p->prev); 
        _quickSort(p->next, h); 
    } 
} 
  
// The main function to sort a linked list.
// It mainly calls _quickSort() 
void quickSort(Node *head) 
{ 
    // Find last node 
    Node *h = lastNode(head); 
  
    // Call the recursive QuickSort 
    _quickSort(head, h); 
} 
  
// A utility function to print contents of arr 
void printList(Node *head) 
{ 
    while (head) 
    { 
        cout << head->data << " "; 
        head = head->next; 
    } 
    cout << endl; 
} 
  
/* Function to insert a node at the 
beginning of the Doubly Linked List */
void push(Node** head_ref, int new_data) 
{ 
    Node* new_node = new Node; /* allocate node */
    new_node->data = new_data; 
  
    /* since we are adding at the
    beginning, prev is always NULL */
    new_node->prev = NULL; 
  
    /* link the old list off the new node */
    new_node->next = (*head_ref); 
  
    /* change prev of head node to new node */
    if ((*head_ref) != NULL) (*head_ref)->prev = new_node ; 
  
    /* move the head to point to the new node */
    (*head_ref) = new_node; 
} 
  
/* Driver code */
int main() 
{ 
    Node *a = NULL; 
    push(&a, 5); 
    push(&a, 20); 
    push(&a, 4); 
    push(&a, 3); 
    push(&a, 30); 
  
    cout << "Linked List before sorting 
"; 
    printList(a); 
  
    quickSort(a); 
  
    cout << "Linked List after sorting 
"; 
    printList(a); 
  
    return 0; 
} 
  
// This code is contributed by rathbhupendra

输出 :

Linked List before sorting
30  3  4  20  5
Linked List after sorting
3  4  5  20  30

时间复杂度:上述实现的时间复杂度与数组的 QuickSort() 的时间复杂度相同。在最坏情况下需要 O(n^2) 时间,在平均和最佳情况下需要 O(nLogn)。最坏的情况发生在链表已经排序时。
我们可以为链表实现随机快速排序吗?
只有当我们可以选择一个固定点作为枢轴(如上述实现中的最后一个元素)时,才能为链表实现快速排序。随机快速排序无法通过选择随机枢轴有效地为链表实现。

有关详细信息,请参阅双向链表上有关快速排序的完整文章!