📜  在已排序的双链表 (DLL) 中查找最接近 X 的三元组和(1)

📅  最后修改于: 2023-12-03 15:23:32.666000             🧑  作者: Mango

在已排序的双链表 (DLL) 中查找最接近 X 的三元组和

简介

双链表(Doubly Linked List,简称DLL)是一种常见的数据结构,它在链表的基础上增加了向前遍历的指针。本文将介绍如何在已排序的双链表中查找最接近给定值 X 的三元组和。

算法思路

该算法的基本思路是:从头节点开始遍历,依次取出三个节点,计算它们的和与给定值 X 的差的绝对值,并与当前最小值比较,更新最小值和对应的三个节点。由于链表已经排序,因此可以用两个指针分别指向链表的头和尾,分别向中间移动来加速查找。

伪代码如下所示:

function findClosestTripletSum(head, x):
    minDiff = infinity
    closest = null
    p1 = head
    p3 = tail
    while p1.next is not p3:
        p2 = p1.next
        while p2 is not p3:
            diff = abs((p1.value + p2.value + p3.value) - x)
            if diff < minDiff:
                minDiff = diff
                closest = [p1, p2, p3]
            if p1.value + p2.value + p3.value > x:
                p3 = p3.prev
            else:
                p2 = p2.next
        p1 = p1.next
    return closest
代码实现

下面是 Python 语言实现的代码片段:

class Node:
    def __init__(self, value=None):
        self.value = value
        self.prev = None
        self.next = None


def find_closest_triplet_sum(head, x):
    min_diff = float('inf')
    closest = None
    p1 = head
    p3 = head
    while p3.next is not None:
        p3 = p3.next
    while p1.next is not p3:
        p2 = p1.next
        while p2 is not p3:
            total = p1.value + p2.value + p3.value
            diff = abs(total - x)
            if diff < min_diff:
                min_diff = diff
                closest = [p1.value, p2.value, p3.value]
            if total > x:
                p3 = p3.prev
            else:
                p2 = p2.next
        p1 = p1.next
    return closest
性能优化

以上算法的时间复杂度为 O(N^2),其中 N 表示链表中节点的个数。由于每个节点都被遍历了一次,因此需要考虑性能优化。

一种简单的优化方法是使用二分查找来查找最接近给定值的节点。具体方法是从头节点开始遍历,对于每个节点,使用二分查找找到最接近给定值的节点,并计算它们的和与给定值 X 的差的绝对值,与当前最小值比较,更新最小值和对应的三个节点。

时间复杂度为 O(NlogN),空间复杂度为 O(1)。

伪代码如下所示:

function findClosestTripletSum(head, x):
    minDiff = infinity
    closest = null
    p1 = head
    p3 = tail
    while p1.next is not p3:
        p2 = binarySearch(p1, p3, x - p1.value - p3.value)
        if p2 is not null:
            diff = abs((p1.value + p2.value + p3.value) - x)
            if diff < minDiff:
                minDiff = diff
                closest = [p1, p2, p3]
        if p2 < x - p1.value - p3.value:
            p1 = p1.next
        else:
            p3 = p3.prev
    return closest


function binarySearch(head, tail, value):
    while head is not tail:
        mid = (head + tail) // 2
        if mid.value == value:
            return mid
        elif mid.value < value:
            head = mid.next
        else:
            tail = mid.prev
    return null
总结

本文介绍了如何在已排序的双链表中查找最接近给定值 X 的三元组和。算法的时间复杂度为 O(N^2),可以通过使用二分查找进行性能优化,将时间复杂度降为 O(NlogN)。