📅  最后修改于: 2023-12-03 15:23:32.666000             🧑  作者: Mango
双链表(Doubly Linked List,简称DLL)是一种常见的数据结构,它在链表的基础上增加了向前遍历的指针。本文将介绍如何在已排序的双链表中查找最接近给定值 X 的三元组和。
该算法的基本思路是:从头节点开始遍历,依次取出三个节点,计算它们的和与给定值 X 的差的绝对值,并与当前最小值比较,更新最小值和对应的三个节点。由于链表已经排序,因此可以用两个指针分别指向链表的头和尾,分别向中间移动来加速查找。
伪代码如下所示:
function findClosestTripletSum(head, x):
minDiff = infinity
closest = null
p1 = head
p3 = tail
while p1.next is not p3:
p2 = p1.next
while p2 is not p3:
diff = abs((p1.value + p2.value + p3.value) - x)
if diff < minDiff:
minDiff = diff
closest = [p1, p2, p3]
if p1.value + p2.value + p3.value > x:
p3 = p3.prev
else:
p2 = p2.next
p1 = p1.next
return closest
下面是 Python 语言实现的代码片段:
class Node:
def __init__(self, value=None):
self.value = value
self.prev = None
self.next = None
def find_closest_triplet_sum(head, x):
min_diff = float('inf')
closest = None
p1 = head
p3 = head
while p3.next is not None:
p3 = p3.next
while p1.next is not p3:
p2 = p1.next
while p2 is not p3:
total = p1.value + p2.value + p3.value
diff = abs(total - x)
if diff < min_diff:
min_diff = diff
closest = [p1.value, p2.value, p3.value]
if total > x:
p3 = p3.prev
else:
p2 = p2.next
p1 = p1.next
return closest
以上算法的时间复杂度为 O(N^2),其中 N 表示链表中节点的个数。由于每个节点都被遍历了一次,因此需要考虑性能优化。
一种简单的优化方法是使用二分查找来查找最接近给定值的节点。具体方法是从头节点开始遍历,对于每个节点,使用二分查找找到最接近给定值的节点,并计算它们的和与给定值 X 的差的绝对值,与当前最小值比较,更新最小值和对应的三个节点。
时间复杂度为 O(NlogN),空间复杂度为 O(1)。
伪代码如下所示:
function findClosestTripletSum(head, x):
minDiff = infinity
closest = null
p1 = head
p3 = tail
while p1.next is not p3:
p2 = binarySearch(p1, p3, x - p1.value - p3.value)
if p2 is not null:
diff = abs((p1.value + p2.value + p3.value) - x)
if diff < minDiff:
minDiff = diff
closest = [p1, p2, p3]
if p2 < x - p1.value - p3.value:
p1 = p1.next
else:
p3 = p3.prev
return closest
function binarySearch(head, tail, value):
while head is not tail:
mid = (head + tail) // 2
if mid.value == value:
return mid
elif mid.value < value:
head = mid.next
else:
tail = mid.prev
return null
本文介绍了如何在已排序的双链表中查找最接近给定值 X 的三元组和。算法的时间复杂度为 O(N^2),可以通过使用二分查找进行性能优化,将时间复杂度降为 O(NlogN)。