📅  最后修改于: 2023-12-03 15:28:51.559000             🧑  作者: Mango
随机算法是利用随机化技术解决问题的算法。在实际应用中,我们通常使用随机性来解决一些困难或无法通过传统方式解决的问题。
本文将介绍随机算法的第二组分类和应用,并提供相关代码片段供程序员参考。
根据算法是否使用外部随机源以及随机性影响算法的效率与正确性,随机算法可分为以下三类:
import random
def partition(arr, low, high):
i = (low - 1)
pivot = arr[random.randint(low, high)]
for j in range(low, high):
if arr[j] <= pivot:
i = i + 1
arr[i], arr[j] = arr[j], arr[i]
arr[i + 1], arr[high] = arr[high], arr[i + 1]
return (i + 1)
def random_quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
random_quick_sort(arr, low, pi - 1)
random_quick_sort(arr, pi + 1, high)
import random
def primality_test(num, k):
if num == 2 or num == 3:
return True
if num <= 1 or num % 2 == 0:
return False
d = num - 1
while d % 2 == 0:
d //= 2
for _ in range(k):
a = random.randrange(2, num - 2)
x = pow(a, d, num)
if x == 1 or x == num - 1:
continue
for _ in range(d - 1):
x = pow(x, 2, num)
if x == num - 1:
break
else:
return False
return True
def partition(arr, low, high):
i = (low - 1)
pivot = arr[high]
for j in range(low, high):
if arr[j] <= pivot:
i = i + 1
arr[i], arr[j] = arr[j], arr[i]
arr[i + 1], arr[high] = arr[high], arr[i + 1]
return (i + 1)
def quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
quick_sort(arr, low, pi - 1)
quick_sort(arr, pi + 1, high)
def randomized_quick_sort(arr):
quick_sort(arr, 0, len(arr)-1)
应用随机算法能够提高算法效率和解决一些经典问题,以下为一些例子:
import random
def partition(arr, low, high):
i = (low - 1)
pivot = arr[random.randint(low, high)]
for j in range(low, high):
if arr[j] <= pivot:
i = i + 1
arr[i], arr[j] = arr[j], arr[i]
arr[i + 1], arr[high] = arr[high], arr[i + 1]
return (i + 1)
def random_quick_sort(arr, low, high):
if low < high:
pi = partition(arr, low, high)
random_quick_sort(arr, low, pi - 1)
random_quick_sort(arr, pi + 1, high)
import random
def approximate_pi(n):
count = 0
for _ in range(n):
x = random.uniform(-1, 1)
y = random.uniform(-1, 1)
if x ** 2 + y ** 2 <= 1:
count += 1
return count / n * 4
import numpy as np
from PIL import Image
def random_pixel_shift(image_data, max_shift):
h, w, c = image_data.shape
border = max_shift
offsets = np.random.randint(-border, border+1, size=(h, w, 2))
image_shifted = np.roll(image_data, offsets, axis=(0,1))
for y in range(max_shift):
if y < 0:
image_shifted[:y,:] = image_data[:y,:]
else:
image_shifted[-y:,:] = image_data[-y:,:]
for x in range(max_shift):
if x < 0:
image_shifted[:,:x] = image_data[:,:x]
else:
image_shifted[:,-x:] = image_data[:,-x:]
return image_shifted
def random_transform(image_path):
image = Image.open(image_path).convert('RGB')
image_data = np.array(image)
image_shifted = random_pixel_shift(image_data, max_shift=10)
transformed_image = Image.fromarray(np.uint8(image_shifted))
return transformed_image
随机算法在各个领域产生了广泛的应用,例如计算机科学、统计学、物理学、金融学等领域。掌握随机算法能够提高算法效率和解决一些经典问题,建议程序员们积极学习和应用随机算法。