📅  最后修改于: 2023-12-03 15:19:37.494000             🧑  作者: Mango
这是一道SP大赛2中的问题3,要求程序员设计一个安置测验的算法。具体而言,给出一些房子和建筑物的坐标,需要将一个特定数量的工人安排在这些位置上,使得每个工人到最近的建筑物的距离之和最小。
这是一道优化问题,可以使用贪心算法或者随机化算法来解决。其中,我们以随机化算法为例。
步骤如下:
def placement_test(house_coords, building_coords, num_workers):
# 随机生成初始工人位置
worker_coords = random.choices(building_coords, k=num_workers)
while True:
# 将建筑物分配给最近的工人
building_assignments = {worker: [] for worker in worker_coords}
for building in building_coords:
closest_worker = min(worker_coords, key=lambda worker: distance(worker, building))
building_assignments[closest_worker].append(building)
# 计算距离之和
distances = 0
for worker in worker_coords:
distances += sum(distance(worker, building) for building in building_assignments[worker])
# 随机选择一个工人改变位置
worker_to_change = random.choice(worker_coords)
new_worker_pos = random_move(worker_to_change)
# 计算新的距离之和
new_building_assignments = {worker: [] for worker in worker_coords}
for building in building_coords:
closest_worker = min(worker_coords, key=lambda worker: distance(worker, building))
new_building_assignments[closest_worker].append(building)
new_distances = 0
for worker in worker_coords:
new_distances += sum(distance(worker, building) for building in new_building_assignments[worker])
# 如果新的距离更小,则接受这个改变
if new_distances < distances:
worker_coords.remove(worker_to_change)
worker_coords.append(new_worker_pos)
# 打印每次迭代的结果,方便调试
print(f'Worker positions: {worker_coords}')
print(f'Building assignments: {building_assignments}')
print(f'Total distance: {distances}')
# 如果稳定下来,则返回最终结果
if distances == new_distances:
return worker_coords
# QA – 安置测验| SP 大赛 2 |问题 3
这是一道SP大赛2中的问题3,要求程序员设计一个安置测验的算法。具体而言,给出一些房子和建筑物的坐标,需要将一个特定数量的工人安排在这些位置上,使得每个工人到最近的建筑物的距离之和最小。
## 算法思路
这是一道优化问题,可以使用贪心算法或者随机化算法来解决。其中,我们以随机化算法为例。
步骤如下:
1. 随机选择一些点,将它们作为工人的位置。这些点可以是所有建筑物的中心,也可以是随机生成的点。
2. 对于剩余的建筑物,将其分配给距离最近的工人。如果有多个工人距离相等,则随机分配一个。
3. 对于每个工人,计算其到最近的建筑物的距离,并加和得到总距离。
4. 随机选取一个工人,将其位置随机移动一定距离。然后重新计算每个工人到最近的建筑物的距离,得到新的总距离。
5. 如果新的总距离更小,则接受这个改变,否则不接受。继续进行步骤4,直到算法收敛。
## 代码片段
```python
def placement_test(house_coords, building_coords, num_workers):
# 随机生成初始工人位置
worker_coords = random.choices(building_coords, k=num_workers)
while True:
# 将建筑物分配给最近的工人
building_assignments = {worker: [] for worker in worker_coords}
for building in building_coords:
closest_worker = min(worker_coords, key=lambda worker: distance(worker, building))
building_assignments[closest_worker].append(building)
# 计算距离之和
distances = 0
for worker in worker_coords:
distances += sum(distance(worker, building) for building in building_assignments[worker])
# 随机选择一个工人改变位置
worker_to_change = random.choice(worker_coords)
new_worker_pos = random_move(worker_to_change)
# 计算新的距离之和
new_building_assignments = {worker: [] for worker in worker_coords}
for building in building_coords:
closest_worker = min(worker_coords, key=lambda worker: distance(worker, building))
new_building_assignments[closest_worker].append(building)
new_distances = 0
for worker in worker_coords:
new_distances += sum(distance(worker, building) for building in new_building_assignments[worker])
# 如果新的距离更小,则接受这个改变
if new_distances < distances:
worker_coords.remove(worker_to_change)
worker_coords.append(new_worker_pos)
# 打印每次迭代的结果,方便调试
print(f'Worker positions: {worker_coords}')
print(f'Building assignments: {building_assignments}')
print(f'Total distance: {distances}')
# 如果稳定下来,则返回最终结果
if distances == new_distances:
return worker_coords