📜  阻挡网格中路径所需的圆形障碍物的最少数量(1)

📅  最后修改于: 2023-12-03 15:42:23.644000             🧑  作者: Mango

阻挡网格中路径所需的圆形障碍物的最少数量

在阻挡网格中,给定起点和终点,要求寻找一条能够到达终点的路径,路径不得穿过圆形障碍物。我们需要找到一种方法,能够以最小的障碍物数量来阻挡所有的路径。

解法

这是一个经典的寻路问题,我们可以使用 A* 算法来解决。但是路径不能穿过圆形障碍物,因此我们需要对 A* 算法做出一些修改。

对于每个圆形障碍物,我们可以将其视为不可行走的格子,并将其周围的格子也标记为不可行走的格子。在实际计算路径时,我们需要在每个能够走到的格子中,找到一个距离终点最近且没有被障碍物所包围的点作为下一个走向的格子。

示例代码

以下是使用 Python 语言实现寻路问题的示例代码:

import heapq

def heuristic(a, b):
    # 欧几里得距离作为启发式函数
    return (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2

def astar(array, start, goal):
    neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]

    close_set = set()
    came_from = {}
    gscore = {start:0}
    fscore = {start:heuristic(start, goal)}
    oheap = []

    heapq.heappush(oheap, (fscore[start], start))

    while oheap:

        current = heapq.heappop(oheap)[1]

        if current == goal:
            data = []
            while current in came_from:
                data.append(current)
                current = came_from[current]
            return data[::-1]

        close_set.add(current)
        for i, j in neighbors:
            neighbor = current[0] + i, current[1] + j
            tentative_g_score = gscore[current] + heuristic(current, neighbor)

            if 0 <= neighbor[0] < array.shape[0]:
                if 0 <= neighbor[1] < array.shape[1]:
                    if array[neighbor[0]][neighbor[1]] == 1:
                        continue
                else:
                    # 越界
                    continue
            else:
                # 越界
                continue

            if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
                continue

            if  tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1]for i in oheap]:
                came_from[neighbor] = current
                gscore[neighbor] = tentative_g_score
                fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
                heapq.heappush(oheap, (fscore[neighbor], neighbor))

    return []


def obstacle_count(obstacles, start, end):
    # 网格大小
    grid_size = 100

    # 创建矩阵,将障碍物和其周围的格子全部标记为不可行走的格子
    matrix = [[0 for x in range(grid_size)] for y in range(grid_size)]
    for obstacle in obstacles:
        for i in range(-obstacle[2], obstacle[2]+1):
            for j in range(-obstacle[2], obstacle[2]+1):
                if (i ** 2 + j ** 2) <= obstacle[2] ** 2:
                    x = int(round(obstacle[0] + i))
                    y = int(round(obstacle[1] + j))
                    if 0 <= x < grid_size and 0 <= y < grid_size:
                        matrix[x][y] = 1

    # 执行 A* 算法
    path = astar(array(matrix), start, end)

    # 统计经过几个障碍物
    count = 0
    for obstacle in obstacles:
        if all([(x-obstacle[0])**2 + (y-obstacle[1])**2 > (obstacle[2])**2 for (x,y) in path]):
            count += 1
    return count

以上代码中,obstacle_count 函数接收一个圆形障碍物的列表,起点和终点的坐标作为输入,返回以最少的障碍物数量来阻挡所有的路径。

总结

以上是阻挡网格中路径所需的圆形障碍物的最少数量的解法和示例,使用 A* 算法并给障碍物和其周围格子标记为不可行走的格子,可以有效地阻挡路径。