如何在 Pyspark 数据框中复制行 N 次?
在本文中,我们将学习如何在 PySpark DataFrame 中复制一行 N 次。
方法一:根据列值重复行
在这种方法中,我们将首先使用createDataFrame()创建一个 PySpark DataFrame。在我们的示例中,“Y”列有一个数值,只能在此处用于重复行。我们将在这里使用withColumn()函数,下面将解释其参数 expr。
Syntax :
DataFrame.withColumn(colName,col)
Parameters :
- colName : str name of the new column
- col : Column(DataType) a column expression of the new column
这里的colName是“Y”。我们将在这里使用的col表达式是:
explode(array_repeat(Y,int(Y)))
- array_repeat是一个表达式,它创建一个包含列重复计数次数的数组。
- explode是一个表达式,它为给定数组或映射中的每个元素返回一个新行。
例子:
Python
# Importing PySpark and Pandas
import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.functions import col,expr
# Session Creation
Spark_Session = SparkSession.builder.appName(
'Spark Session'
).getOrCreate()
# Accepting n from the user.
n = int(input('Enter n : '))
# Data filled in our DataFrame
rows = [['a',1,'@'],
['b',3,'_'],
['c',2,'!'],
['d',6,'(']]
# Columns of our DataFrame
columns = ['X','Y','Z']
# DataFrame is created
df = Spark_Session.createDataFrame(rows,columns)
# Printing the DataFrame
df.show()
# Creating a new DataFrame with a
# expression using functions
new_df = df.withColumn(
"Y", expr("explode(array_repeat(Y,int(Y)))"))
# Printing the new DataFrame
new_df.show()
Python
# Importing PySpark and random
import pyspark
from pyspark.sql import SparkSession
import random
# Session Creation
Spark_Session = SparkSession.builder.appName(
'Spark Session'
).getOrCreate()
# Accepting n from the user.
n = int(input('Enter n : '))
# Data filled in our DataFrame
rows = [['a',1,'@'],
['b',3,'_'],
['c',2,'!'],
['d',6,'(']]
# Columns of our DataFrame
columns = ['X','Y','Z']
# DataFrame is created
df = Spark_Session.createDataFrame(rows,columns)
# Showing the DataFrame
df.show()
# Creating a list of rows and
# getting a random row from the list
row_list = df.collect()
repeated = random.choice(row_list)
# adding a row object to the list
# n times
for _ in range(n):
row_list.append(repeated)
# Final DataFrame
df = Spark_Session.createDataFrame(row_list)
# Result
df.show()
Python
# Importing PySpark and Pandas
import pyspark
from pyspark.sql import SparkSession
import pandas as pd
# Session Creation
Spark_Session = SparkSession.builder.appName(
'Spark Session'
).getOrCreate()
# Accepting n from the user.
n = int(input('Enter n : '))
# Data filled in our DataFrame
rows = [['a',1,'@'],
['b',3,'_'],
['c',2,'!'],
['d',6,'(']]
# Columns of our DataFrame
columns = ['X','Y','Z']
# DataFrame is created
df = Spark_Session.createDataFrame(rows,columns)
# Converting to a Pandas DataFrame
df_pandas = df.toPandas()
# The initial DataFrame
print('First DF')
print(df_pandas)
# the first row
first_row = df_pandas[:1]
# Appending the row n times
for _ in range(n):
df_pandas = df_pandas.append(first_row,ignore_index = True)
# Final DataFrame
print('New DF')
print(df_pandas)
输出 :
方法 2:使用 collect() 并在列表中附加一个随机行
在这种方法中,我们将首先接受来自用户的 N。然后我们将使用createDataFrame()创建一个 PySpark DataFrame。然后我们可以存储使用collect()方法找到的 Row 对象列表。需要的语法是:
DataFrame.collect()
在一个变量中。然后,我们将使用Python List append()函数在列表中追加一个行对象,这将在 N 次迭代的循环中完成。最后,Row 对象列表将转换为 PySpark DataFrame。
例子:
Python
# Importing PySpark and random
import pyspark
from pyspark.sql import SparkSession
import random
# Session Creation
Spark_Session = SparkSession.builder.appName(
'Spark Session'
).getOrCreate()
# Accepting n from the user.
n = int(input('Enter n : '))
# Data filled in our DataFrame
rows = [['a',1,'@'],
['b',3,'_'],
['c',2,'!'],
['d',6,'(']]
# Columns of our DataFrame
columns = ['X','Y','Z']
# DataFrame is created
df = Spark_Session.createDataFrame(rows,columns)
# Showing the DataFrame
df.show()
# Creating a list of rows and
# getting a random row from the list
row_list = df.collect()
repeated = random.choice(row_list)
# adding a row object to the list
# n times
for _ in range(n):
row_list.append(repeated)
# Final DataFrame
df = Spark_Session.createDataFrame(row_list)
# Result
df.show()
输出 :
方法 3:将 PySpark DataFrame 转换为 Pandas DataFrame
在这种方法中,我们将首先接受来自用户的 N。然后我们将使用createDataFrame()创建一个 PySpark DataFrame。然后,我们将使用toPandas()将 PySpark DataFrame 转换为 Pandas DataFrame。然后,我们将使用语法DataFrame[:1] 进行切片来获取 DataFrame 的第一行。然后,我们将使用append()函数通过循环将行粘贴到 Pandas DataFrame。它们的 append() 语法是:
Syntax : DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=False)
Parameters :
- other : DataFrame/Numpy Series The data to be appended
- ignore_index : bool, default : False Check if the DataFrame of the new DataFrame depends on the older DataFrame
- verify_integrity : bool, default : False Takes care of duplicate values
- sort : bool, default : False Sort columns based on the value
例子:
Python
# Importing PySpark and Pandas
import pyspark
from pyspark.sql import SparkSession
import pandas as pd
# Session Creation
Spark_Session = SparkSession.builder.appName(
'Spark Session'
).getOrCreate()
# Accepting n from the user.
n = int(input('Enter n : '))
# Data filled in our DataFrame
rows = [['a',1,'@'],
['b',3,'_'],
['c',2,'!'],
['d',6,'(']]
# Columns of our DataFrame
columns = ['X','Y','Z']
# DataFrame is created
df = Spark_Session.createDataFrame(rows,columns)
# Converting to a Pandas DataFrame
df_pandas = df.toPandas()
# The initial DataFrame
print('First DF')
print(df_pandas)
# the first row
first_row = df_pandas[:1]
# Appending the row n times
for _ in range(n):
df_pandas = df_pandas.append(first_row,ignore_index = True)
# Final DataFrame
print('New DF')
print(df_pandas)
输出 :