Tensorflow.js tf.train.adamax()函数
Tensorflow.js 是谷歌开发的一个开源库,用于在浏览器或节点环境中运行机器学习模型和深度学习神经网络。
我们用来创建使用 adamax 算法的 tf.AdamaxOptimizer 的tf.train.adamax()函数。
句法:
tf.train.adamax(learningRate, beta1, beta2, epsilon, decay)
参数:
- learningRate:它指定 adamax 梯度下降算法将使用的学习率。
- beta1:它指定第一时刻的估计指数衰减率。
- beta2:它指定第二时刻的估计指数衰减率。
- epsilon:它为数值稳定性指定了一个小常数。
- 衰减:它指定每次更新的衰减率。
返回值:它返回一个 tf.adamaxOptimizer。
示例 1:通过学习系数 a 和 b,使用 adamax 优化器拟合函数f = (a*x + y)。
Javascript
// Importing tensorflow
import * as tf from "@tensorflow/tfjs"
const xs = tf.tensor1d([0, 1, 2, 3]);
const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]);
// Choosing random coefficients
const a = tf.scalar(Math.random()).variable();
const b = tf.scalar(Math.random()).variable();
// Defining function f = (a*x + b).
const f = x => a.mul(x).add(b);
const loss = (pred, label) => pred.sub(label).square().mean();
// Defining learning rate of adamax algorithm
const learningRate = 0.01;
// Creating our optimizer.
const optimizer = tf.train.adamax(learningRate);
// Train the model.
for (let i = 0; i < 10; i++) {
optimizer.minimize(() => loss(f(xs), ys));
}
// Make predictions.
console.log(
`a: ${a.dataSync()}, b: ${b.dataSync()}}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
console.log(`x: ${i}, pred: ${pred}`);
});
Javascript
// Importing tensorflow
import * as tf from "@tensorflow/tfjs"
const xs = tf.tensor1d([0, 1, 2, 3]);
const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]);
// Choosing random coefficients
const a = tf.scalar(Math.random()).variable();
const b = tf.scalar(Math.random()).variable();
// Defining function f = (a*x^2 + b*x + c).
const f = x => a.mul(x).add(b);
const loss = (pred, label) => pred.sub(label).square().mean();
// Defining configurations of adamax algorithm
const learningRate = 0.01;
const beta1 = 0.1;
const beta2 = 0.1;
const epsilon = 0.3;
const decay = 0.5;
// Creating our optimizer.
const optimizer = tf.train.adamax(
learningRate, beta1, beta2, epsilon, decay);
// Train the model.
for (let i = 0; i < 10; i++) {
optimizer.minimize(() => loss(f(xs), ys));
}
// Make predictions.
console.log(
`a: ${a.dataSync()}, b: ${b.dataSync()}}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
console.log(`x: ${i}, pred: ${pred}`);
});
输出:
a: 0.4271160364151001, b: 0.21284617483615875}
x: 0, pred: 0.21284617483615875
x: 1, pred: 0.6399621963500977
x: 2, pred: 1.0670782327651978
x: 3, pred: 1.4941942691802979
示例 2:通过学习系数 a、b 和 c,使用 adamax optimiszer 拟合二次方程。我们优化器的配置如下:
- 学习率 = 0.01;
- β1 = 0.1;
- β2 = 0.1;
- ε = 0.3;
- 衰减 = 0.5;
Javascript
// Importing tensorflow
import * as tf from "@tensorflow/tfjs"
const xs = tf.tensor1d([0, 1, 2, 3]);
const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]);
// Choosing random coefficients
const a = tf.scalar(Math.random()).variable();
const b = tf.scalar(Math.random()).variable();
// Defining function f = (a*x^2 + b*x + c).
const f = x => a.mul(x).add(b);
const loss = (pred, label) => pred.sub(label).square().mean();
// Defining configurations of adamax algorithm
const learningRate = 0.01;
const beta1 = 0.1;
const beta2 = 0.1;
const epsilon = 0.3;
const decay = 0.5;
// Creating our optimizer.
const optimizer = tf.train.adamax(
learningRate, beta1, beta2, epsilon, decay);
// Train the model.
for (let i = 0; i < 10; i++) {
optimizer.minimize(() => loss(f(xs), ys));
}
// Make predictions.
console.log(
`a: ${a.dataSync()}, b: ${b.dataSync()}}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
console.log(`x: ${i}, pred: ${pred}`);
});
输出:
a: 0.8346626162528992, b: 0.5925931334495544}
x: 0, pred: 0.21284617483615875
x: 1, pred: 1.4272557497024536
x: 2, pred: 2.261918306350708
x: 3, pred: 3.096580982208252
参考: https://js.tensorflow.org/api/1.0.0/#train.adamax