毫升 |使用线性回归进行降雨预测
先决条件:线性回归
降雨预测是应用科学技术来预测一个地区的降雨量。准确确定降雨量对于有效利用水资源、提高作物生产力和预先规划水结构具有重要意义。
在本文中,我们将使用线性回归来预测降雨量。线性回归告诉我们可以预期多少英寸的降雨量。
该数据集是来自德克萨斯州奥斯汀的公共天气数据集,可在 Kaggle 上获得。数据集可以在这里找到。
数据清洗:
数据有各种形式,其中大部分非常混乱和非结构化。他们很少准备好使用。数据集,无论大小,都会带来各种问题——无效字段、缺失值和附加值,以及与我们需要的形式不同的值。为了使其成为可行或结构化的形式,我们需要“清理”我们的数据,并使其准备好使用。一些常见的清理包括解析、转换为 one-hot、删除不必要的数据等。
在我们的案例中,我们的数据有些日子没有记录某些因素。如果有微量降水,则以 cm 为单位的降雨量标记为 T。我们的算法需要数字,因此我们无法处理数据中出现的字母。所以我们需要在将数据应用到我们的模型之前清理数据
在Python中清理数据:
# importing libraries
import pandas as pd
import numpy as np
# read the data in a pandas dataframe
data = pd.read_csv("austin_weather.csv")
# drop or delete the unnecessary columns in the data.
data = data.drop(['Events', 'Date', 'SeaLevelPressureHighInches',
'SeaLevelPressureLowInches'], axis = 1)
# some values have 'T' which denotes trace rainfall
# we need to replace all occurrences of T with 0
# so that we can use the data in our model
data = data.replace('T', 0.0)
# the data also contains '-' which indicates no
# or NIL. This means that data is not available
# we need to replace these values as well.
data = data.replace('-', 0.0)
# save the data in a csv file
data.to_csv('austin_final.csv')
一旦数据被清理,它就可以用作我们线性回归模型的输入。线性回归是一种在因变量和许多自解释变量之间建立关系的线性方法。这是通过绘制一条最适合我们的散点图的线来完成的,即错误最少。通过代入线方程中的独立值,这给出了价值预测,即多少。
我们将使用 Scikit-learn 的线性回归模型来训练我们的数据集。训练模型后,我们可以为各种列(例如温度、露点、压力等)提供自己的输入,以根据这些属性预测天气。
# importing libraries
import pandas as pd
import numpy as np
import sklearn as sk
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
# read the cleaned data
data = pd.read_csv("austin_final.csv")
# the features or the 'x' values of the data
# these columns are used to train the model
# the last column, i.e, precipitation column
# will serve as the label
X = data.drop(['PrecipitationSumInches'], axis = 1)
# the output or the label.
Y = data['PrecipitationSumInches']
# reshaping it into a 2-D vector
Y = Y.values.reshape(-1, 1)
# consider a random day in the dataset
# we shall plot a graph and observe this
# day
day_index = 798
days = [i for i in range(Y.size)]
# initialize a linear regression classifier
clf = LinearRegression()
# train the classifier with our
# input data.
clf.fit(X, Y)
# give a sample input to test our model
# this is a 2-D vector that contains values
# for each column in the dataset.
inp = np.array([[74], [60], [45], [67], [49], [43], [33], [45],
[57], [29.68], [10], [7], [2], [0], [20], [4], [31]])
inp = inp.reshape(1, -1)
# print the output.
print('The precipitation in inches for the input is:', clf.predict(inp))
# plot a graph of the precipitation levels
# versus the total number of days.
# one day, which is in red, is
# tracked here. It has a precipitation
# of approx. 2 inches.
print("the precipitation trend graph: ")
plt.scatter(days, Y, color = 'g')
plt.scatter(days[day_index], Y[day_index], color ='r')
plt.title("Precipitation level")
plt.xlabel("Days")
plt.ylabel("Precipitation in inches")
plt.show()
x_vis = X.filter(['TempAvgF', 'DewPointAvgF', 'HumidityAvgPercent',
'SeaLevelPressureAvgInches', 'VisibilityAvgMiles',
'WindAvgMPH'], axis = 1)
# plot a graph with a few features (x values)
# against the precipitation or rainfall to observe
# the trends
print("Precipitation vs selected attributes graph: ")
for i in range(x_vis.columns.size):
plt.subplot(3, 2, i + 1)
plt.scatter(days, x_vis[x_vis.columns.values[i][:100]],
color = 'g')
plt.scatter(days[day_index],
x_vis[x_vis.columns.values[i]][day_index],
color ='r')
plt.title(x_vis.columns.values[i])
plt.show()
输出 :
The precipitation in inches for the input is: [[1.33868402]]
The precipitation trend graph:
降水与选定属性图:
跨多个参数跟踪降水量约为 2 英寸的一天(红色)(同一天是跨多个特征的跟踪器,例如温度、压力等)。 x 轴表示天数,y 轴表示温度、压力等特征的大小。从图中可以看出,当温度较高且湿度为高的。
在评论中写代码?请使用 ide.geeksforgeeks.org,生成链接并在此处分享链接。