📜  在 Matplotlib 的条形图中设置不同的误差条颜色

📅  最后修改于: 2022-05-13 01:55:18.680000             🧑  作者: Mango

在 Matplotlib 的条形图中设置不同的误差条颜色

Python为我们提供了各种库,其中 Matplotlib 就是其中之一。它用于数据可视化目的。在本文中,我们将在 Matplotlib 的条形图中设置不同的误差条颜色。

Matplotlib 中的误差线

matplotlib 的各种图,例如条形图、折线图都可以使用误差线。误差棒用于显示测量或计算值的精度。如果没有误差条,使用 matplotlib 从一组值创建的图看起来具有高精度或高置信度。

如何在 Matplotlib 的条形图中设置不同的误差条颜色

示例 1:

步骤 1:首先创建一个条形图。

Python3
# import matplotlib package
import matplotlib.pyplot as plt
  
# Store set of values in x 
# and height for plotting 
# the graph
x = range(4)
height = [ 3, 6, 5, 4]
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# Creating the bar plot 
# with opacity=0.1
ax.bar(x, height, alpha = 0.1)


Python3
# import matplotlib package
import matplotlib.pyplot as plt
  
# Store set of values in x 
# and height for plotting 
# the graph
x= range(4)
height=[ 3, 6, 5, 4]
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# Creating the bar plot 
# with opacity=0.1
ax.bar(x, height, alpha = 0.1)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
  
for pos, y, err in zip(x, height, error):
    ax.errorbar(pos, y, err, lw = 2,
                capsize = 4, capthick = 4, 
                color = "green")
      
# Showing the plotted error bar
# plot with same color which is
# green
plt.show()


Python3
# importing matplotlib
import matplotlib.pyplot as plt
  
# Storing set of values in
# x, height, error and colors for ploting the graph
x= range(4)
height=[ 3, 6, 5, 4]
error=[ 1, 5, 3, 2]
colors = ['red', 'green', 'blue', 'black']
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# ploting the bar plot
ax.bar( x, height, alpha = 0.1)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
for pos, y, err, colors in zip(x, height, 
                               error, colors):
    
    ax.errorbar(pos, y, err, lw = 2,
                capsize = 4, capthick = 4, 
                color = colors)
      
# Showing the plotted error bar
# plot with different color 
plt.show()


Python3
# importing matplotlib package
import matplotlib.pyplot as plt
  
# importing the numpy package
import numpy as np
  
# Storing set of values in
# names, x, height, 
# error and colors for ploting the graph
names= ['Bijon', 'Sujit', 'Sayan', 'Saikat']
x=np.arange(4)
marks=[ 60, 90, 55, 46]
error=[ 11, 15, 5, 9]
colors = ['red', 'green', 'blue', 'black']
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# ploting the bar plot
ax.bar(x, marks, alpha = 0.5,
       color = colors)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
for pos, y, err, colors in zip(x, marks,
                               error, colors):
    
    ax.errorbar(pos, y, err, lw = 2,
                capsize = 4, capthick = 4,
                color = colors)
      
# Showing the plotted error bar
# plot with different color 
ax.set_ylabel('Marks of the Students')
  
# Using x_ticks and x_labels
# to set the name of the
# students at each point
ax.set_xticks(x)
ax.set_xticklabels(names)
ax.set_xlabel('Name of the students')
  
# Showing the plot
plt.show()


Python3
# importing matplotlib
import matplotlib.pyplot as plt
  
# importing the numpy package
import numpy as np
  
# Storing set of values in
# names, x, height, error, 
# error1 and colors for ploting the graph
names= ['USA', 'India', 'England', 'China']
x=np.arange(4)
economy=[21.43, 2.87, 2.83, 14.34]
error=[1.4, 1.5, 0.5, 1.9]
error1=[0.5, 0.2, 0.6, 1]
colors = ['red', 'grey', 'blue', 'magenta']
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# ploting the bar plot
ax.bar(x, economy, alpha = 0.5,
       color = colors)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
for pos, y, err,err1, colors in zip(x, economy,
                                    error, error1, 
                                    colors):
    
    ax.errorbar(pos, y, err, err1, fmt = 'o',
                lw = 2, capsize = 4, capthick = 4,
                color = colors)
      
# Showing the plotted error bar
# plot with different color 
ax.set_ylabel('Economy(in trillions)')
  
# Using x_ticks and x_labels
# to set the name of the
# countries at each point
ax.set_xticks(x)
ax.set_xticklabels(names)
ax.set_xlabel('Name of the countries')
  
# Showing the plot
plt.show()


输出:

第 2 步:为每个点添加误差条:

蟒蛇3

# import matplotlib package
import matplotlib.pyplot as plt
  
# Store set of values in x 
# and height for plotting 
# the graph
x= range(4)
height=[ 3, 6, 5, 4]
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# Creating the bar plot 
# with opacity=0.1
ax.bar(x, height, alpha = 0.1)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
  
for pos, y, err in zip(x, height, error):
    ax.errorbar(pos, y, err, lw = 2,
                capsize = 4, capthick = 4, 
                color = "green")
      
# Showing the plotted error bar
# plot with same color which is
# green
plt.show()

输出:

第 3 步:在条形图中设置不同的误差条颜色(示例 1):

蟒蛇3

# importing matplotlib
import matplotlib.pyplot as plt
  
# Storing set of values in
# x, height, error and colors for ploting the graph
x= range(4)
height=[ 3, 6, 5, 4]
error=[ 1, 5, 3, 2]
colors = ['red', 'green', 'blue', 'black']
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# ploting the bar plot
ax.bar( x, height, alpha = 0.1)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
for pos, y, err, colors in zip(x, height, 
                               error, colors):
    
    ax.errorbar(pos, y, err, lw = 2,
                capsize = 4, capthick = 4, 
                color = colors)
      
# Showing the plotted error bar
# plot with different color 
plt.show()

输出:

示例 2:在条形图中设置不同的误差条颜色:

蟒蛇3

# importing matplotlib package
import matplotlib.pyplot as plt
  
# importing the numpy package
import numpy as np
  
# Storing set of values in
# names, x, height, 
# error and colors for ploting the graph
names= ['Bijon', 'Sujit', 'Sayan', 'Saikat']
x=np.arange(4)
marks=[ 60, 90, 55, 46]
error=[ 11, 15, 5, 9]
colors = ['red', 'green', 'blue', 'black']
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# ploting the bar plot
ax.bar(x, marks, alpha = 0.5,
       color = colors)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
for pos, y, err, colors in zip(x, marks,
                               error, colors):
    
    ax.errorbar(pos, y, err, lw = 2,
                capsize = 4, capthick = 4,
                color = colors)
      
# Showing the plotted error bar
# plot with different color 
ax.set_ylabel('Marks of the Students')
  
# Using x_ticks and x_labels
# to set the name of the
# students at each point
ax.set_xticks(x)
ax.set_xticklabels(names)
ax.set_xlabel('Name of the students')
  
# Showing the plot
plt.show()

输出:

示例 3:在条形图中设置不同的误差条颜色。

蟒蛇3

# importing matplotlib
import matplotlib.pyplot as plt
  
# importing the numpy package
import numpy as np
  
# Storing set of values in
# names, x, height, error, 
# error1 and colors for ploting the graph
names= ['USA', 'India', 'England', 'China']
x=np.arange(4)
economy=[21.43, 2.87, 2.83, 14.34]
error=[1.4, 1.5, 0.5, 1.9]
error1=[0.5, 0.2, 0.6, 1]
colors = ['red', 'grey', 'blue', 'magenta']
  
# using tuple unpacking
# to grab fig and axes
fig, ax = plt.subplots()
  
# ploting the bar plot
ax.bar(x, economy, alpha = 0.5,
       color = colors)
  
# Zip function acts as an
# iterator for tuples so that
# we are iterating through 
# each set of values in a loop
for pos, y, err,err1, colors in zip(x, economy,
                                    error, error1, 
                                    colors):
    
    ax.errorbar(pos, y, err, err1, fmt = 'o',
                lw = 2, capsize = 4, capthick = 4,
                color = colors)
      
# Showing the plotted error bar
# plot with different color 
ax.set_ylabel('Economy(in trillions)')
  
# Using x_ticks and x_labels
# to set the name of the
# countries at each point
ax.set_xticks(x)
ax.set_xticklabels(names)
ax.set_xlabel('Name of the countries')
  
# Showing the plot
plt.show()

输出: