Python – tensorflow.math.zeta()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
zeta()用于计算 Hurwitz zeta函数。它被定义为:
Syntax: tensorflow.math.zeta( x, q, name)
Parameter:
- x: It’s a Tensor. Allowed dtypes are float32 and float64.
- q: It’s a Tensor of same dtype as x.
- name(optional): It defines the name for the operation.
Returns:
It returns a Tensor of same dtype as x.
示例 1:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([ -5, -7, 2, 0, 7], dtype = tf.float64)
b = tf.constant([ 1, 3, 9, 4, 7], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.zeta(a, b)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([ [-5, -7], [ 2, 0]], dtype = tf.float64)
b = tf.constant([ [1, 3], [9, 4]], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.zeta(a, b)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([-5. -7. 2. 0. 7.], shape=(5, ), dtype=float64)
b: tf.Tensor([1. 3. 9. 4. 7.], shape=(5, ), dtype=float64)
Result: tf.Tensor(
[ nan nan 1.17512015e-01 nan
2.12260976e-06], shape=(5, ), dtype=float64)
示例 2:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([ [-5, -7], [ 2, 0]], dtype = tf.float64)
b = tf.constant([ [1, 3], [9, 4]], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating result
res = tf.math.zeta(a, b)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor(
[[-5. -7.]
[ 2. 0.]], shape=(2, 2), dtype=float64)
b: tf.Tensor(
[[1. 3.]
[9. 4.]], shape=(2, 2), dtype=float64)
Result: tf.Tensor(
[[ nan nan]
[0.11751201 nan]], shape=(2, 2), dtype=float64)