📌  相关文章
📜  在二叉树的每个级别上添加的最小值以使所有级别的总和相等

📅  最后修改于: 2022-05-13 01:57:17.194000             🧑  作者: Mango

在二叉树的每个级别上添加的最小值以使所有级别的总和相等

给定一棵二叉树,任务是找到所有大于或等于 0 的最小值,这些最小值应该在每一层相加,以使每一层的和等于

例子:

方法:给定问题可以通过在二叉树中找到最大级别和来解决。通过贪心方法,应该在每个级别添加的最小值必须等于二叉树中该级别的总和与二叉树中的最大级别总和之间的

下面是上述方法的实现:

C++
#include 
using namespace std;
 
// Node class
class Node {
public:
    int data;
    Node *left, *right;
    Node(int item)
    {
        data = item;
        left = right = NULL;
    }
};
 
// Function to find sum of nodes
// present in a single level.
void Utilfun(Node* root, int level, vector& ans)
{
    if (root == NULL) {
        return;
    }
 
    // Adding the data
    // of all the level
    if (ans.size() == level) {
        ans.push_back(root->data);
    }
 
    // If previous node data is already
    // then update ans
    else {
        int val = ans[level] + root->data;
        ans[level] = val;
    }
 
    // Basic dfs approach to traverse
    // on all the nodes with next level
    Utilfun(root->left, level + 1, ans);
    Utilfun(root->right, level + 1, ans);
}
 
// Function to find the minimum
// value added to make each level
// sum equal
vector
levelOrderAP(Node* root)
{
 
    // Initialization of array
    vector finalAns;
 
    // If root is null
    if (root == NULL) {
        return finalAns;
    }
 
    // Function Call
    Utilfun(root, 0, finalAns);
    int maxi = INT_MIN;
 
    // finding the maximum element
    for (int ele : finalAns) {
        maxi = max(maxi, ele);
    }
    // Subtracting all the elements
    // from maximum elements
    for (int i = 0; i < finalAns.size(); i++) {
        int val = maxi - finalAns[i];
        finalAns[i] = val;
    }
    return finalAns;
}
 
// Driver Code
int main()
{
    Node* root = new Node(8);
    root->left = new Node(3);
    root->right = new Node(10);
    root->left->left = new Node(1);
    root->left->right = new Node(6);
    root->right->right = new Node(14);
    root->left->right->left = new Node(4);
    root->left->right->right = new Node(7);
    root->right->right->left = new Node(13);
 
    vector ans = levelOrderAP(root);
    for (auto i : ans) {
        cout << i << " ";
    }
    return 0;
}
 
// This code is contributed by maddler.


Java
// Java program for the above approach
import java.util.*;
 
// Node class
class Node {
    int data;
    Node left, right;
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
// Binary tree class
class BinaryTree {
    Node root;
    public BinaryTree()
    {
        root = null;
    }
 
    // Function to find the minimum
    // value added to make each level
    // sum equal
    static ArrayList levelOrderAP(Node root)
    {
 
        // Initialization of array
        ArrayList finalAns = new ArrayList<>();
 
        // If root is null
        if (root == null) {
            return finalAns;
        }
 
        // Function Call
        Utilfun(root, 0, finalAns);
        int maxi = Integer.MIN_VALUE;
 
        // finding the maximum element
        for (int ele : finalAns) {
            maxi = Math.max(maxi, ele);
        }
        // Subtracting all the elements
        // from maximum elements
        for (int i = 0; i < finalAns.size(); i++) {
            int val = maxi - finalAns.get(i);
            finalAns.set(i, val);
        }
        return finalAns;
    }
 
    // Function to find sum of nodes
    // present in a single level.
    static void Utilfun(Node root,
                        int level,
                        ArrayList ans)
    {
        if (root == null) {
            return;
        }
 
        // Adding the data
        // of all the level
        if (ans.size() == level) {
            ans.add(root.data);
        }
 
        // If previous node data is already
        // then update ans
        else {
            int val = ans.get(level)
                      + root.data;
            ans.set(level, val);
        }
 
        // Basic dfs approach to traverse
        // on all the nodes with next level
        Utilfun(root.left, level + 1, ans);
        Utilfun(root.right, level + 1, ans);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(8);
        tree.root.left = new Node(3);
        tree.root.right = new Node(10);
        tree.root.left.left = new Node(1);
        tree.root.left.right = new Node(6);
        tree.root.right.right = new Node(14);
        tree.root.left.right.left = new Node(4);
        tree.root.left.right.right = new Node(7);
        tree.root.right.right.left = new Node(13);
 
        ArrayList ans
            = levelOrderAP(tree.root);
        System.out.println(ans);
    }
}


Python3
# Python3 program for the above approach
import sys
 
# Structure of Node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
def newNode(data):
    temp = Node(data)
    return temp
  
# Function to find the minimum
# value added to make each level
# sum equal
def levelOrderAP(root):
    # Initialization of array
    finalAns = []
 
    # If root is null
    if (root == None):
        return finalAns
 
    # Function Call
    Utilfun(root, 0, finalAns)
    maxi = -sys.maxsize
 
    # finding the maximum element
    for ele in range(len(finalAns)):
        maxi = max(maxi, finalAns[ele])
    # Subtracting all the elements
    # from maximum elements
    for i in range(len(finalAns)):
        val = maxi - finalAns[i]
        finalAns[i] = val
    return finalAns
 
# Function to find sum of nodes
# present in a single level.
def Utilfun(root, level, ans):
    if (root == None):
        return
 
    # Adding the data
    # of all the level
    if (len(ans) == level):
        ans.append(root.data)
 
    # If previous node data is already
    # then update ans
    else:
        val = ans[level] + root.data
        ans[level] = val
 
    # Basic dfs approach to traverse
    # on all the nodes with next level
    Utilfun(root.left, level + 1, ans)
    Utilfun(root.right, level + 1, ans)
 
root = newNode(8)
root.left = newNode(3)
root.right = newNode(10)
root.left.left = newNode(1)
root.left.right = newNode(6)
root.right.right = newNode(14)
root.left.right.left = newNode(4)
root.left.right.right = newNode(7)
root.right.right.left = newNode(13)
 
ans = levelOrderAP(root)
print("[", end="")
for i in range(len(ans) - 1):
    print(ans[i], ", ", sep = "", end = "")
print(ans[-1], "]", sep = "")
 
# This code is contributed by rameshtravel07.


C#
// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
public class Node
{
    public int data;
    public Node left, right;
};
 
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
  
    return temp;
}
    
   // Function to find the minimum
    // value added to make each level
    // sum equal
    static List levelOrderAP(Node root)
    {
 
        // Initialization of array
        List finalAns = new List();
 
        // If root is null
        if (root == null) {
            return finalAns;
        }
 
        // Function Call
        Utilfun(root, 0, finalAns);
        int maxi = Int32.MinValue;
 
        // finding the maximum element
        foreach (int ele in finalAns) {
            maxi = Math.Max(maxi, ele);
        }
        // Subtracting all the elements
        // from maximum elements
        for (int i = 0; i < finalAns.Count; i++) {
            int val = maxi - finalAns[i];
            finalAns[i] = val;
        }
        return finalAns;
    }
 
    // Function to find sum of nodes
    // present in a single level.
    static void Utilfun(Node root,
                        int level,
                        List ans)
    {
        if (root == null) {
            return;
        }
 
        // Adding the data
        // of all the level
        if (ans.Count == level) {
            ans.Add(root.data);
        }
 
        // If previous node data is already
        // then update ans
        else {
            int val = ans[level]
                      + root.data;
            ans[level] = val;
        }
 
        // Basic dfs approach to traverse
        // on all the nodes with next level
        Utilfun(root.left, level + 1, ans);
        Utilfun(root.right, level + 1, ans);
    }
 
    // Driver Code
    public static void Main()
    {
        Node root = newNode(8);
        root.left = newNode(3);
        root.right = newNode(10);
        root.left.left = newNode(1);
        root.left.right = newNode(6);
        root.right.right = newNode(14);
        root.left.right.left = newNode(4);
        root.left.right.right = newNode(7);
        root.right.right.left = newNode(13);
 
        List ans = levelOrderAP(root);
        foreach(int i in ans)
          Console.Write(i+ " ");
    }
}
 
// This code is contributed by ipg2016107.


Javascript


输出
[16, 11, 3, 0]

时间复杂度: O(N)
辅助空间: O(N)