Python SciPy – ndimage.map_coordinates()函数
此函数用于通过插值将给定数组映射到新坐标。坐标数组用于为输出中的每个点查找输入中的相应坐标。
Syntax: scipy.ndimage.map_coordinates(input, coordinates, output=None, order=3,cval=0.0, prefilter=True)
Parameters
- input: which is of array_like – The input array.
- coordinates: which is of array_like- The coordinates at which input is evaluated.
- output: which is an array – The array in which to place the output.
- order: which is of int, – it is optional,The order of the spline interpolation,
- cval: it is a scalar,- it is optional,The Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
- prefilter: it is of boolean type, it is optional. it is used to determine if the input array is prefiltered with spline_filter before interpolation.
Returns: map_coordinates: ndarray
示例 1:
Python3
# importing numpy package for
# creating arrays
import numpy as np
# importing scipy
from scipy import ndimage
# creating an array from 0 to 15 values
a = np.arrange(16.).reshape((4, 4))
# finding coordinates
ndimage.map_coordinates(a, [[0.3, 1], [0.5, 1]], order=1)
Python3
# importing numpy package for
# creating arrays
import numpy as np
# importing scipy
from scipy import ndimage
a = np.arrange(25.).reshape((5, 5))
vals = [[0.3, 1], [0.5, 1]]
# calculating mode
print(ndimage.map_coordinates(a, vals, order=1, mode='nearest'))
print(ndimage.map_coordinates(a, vals, order=1, cval=0, output=bool))
print(ndimage.map_coordinates(a, vals, order=1))
输出:
array([1.7, 5. ])
示例 2:
蟒蛇3
# importing numpy package for
# creating arrays
import numpy as np
# importing scipy
from scipy import ndimage
a = np.arrange(25.).reshape((5, 5))
vals = [[0.3, 1], [0.5, 1]]
# calculating mode
print(ndimage.map_coordinates(a, vals, order=1, mode='nearest'))
print(ndimage.map_coordinates(a, vals, order=1, cval=0, output=bool))
print(ndimage.map_coordinates(a, vals, order=1))
输出:
[2. 6.]
[ True True]
[2. 6.]