用于排序数组中第 k 个缺失元素的Python程序
给定一个递增序列a[] ,我们需要在递增序列中找到第 K 个缺失的连续元素,该元素不存在于序列中。如果没有第 k 个缺失元素,则输出 -1。
例子 :
Input : a[] = {2, 3, 5, 9, 10};
k = 1;
Output : 1
Explanation: Missing Element in the increasing
sequence are {1,4, 6, 7, 8}. So k-th missing element
is 1
Input : a[] = {2, 3, 5, 9, 10, 11, 12};
k = 4;
Output : 7
Explanation: missing element in the increasing
sequence are {1, 4, 6, 7, 8} so k-th missing
element is 7
方法一:开始迭代数组元素,对每个元素检查下一个元素是否连续,如果不连续,则取这两者的差,检查差是否大于或等于给定的k,然后计算 ans = a[i] + count,否则迭代下一个元素。
Python3
# Function to find k-th
# missing element
def missingK(a, k, n) :
difference = 0
ans = 0
count = k
flag = 0
# iterating over the array
for i in range (0, n-1) :
difference = 0
# check if i-th and
# (i + 1)-th element
# are not consecutive
if ((a[i] + 1) != a[i + 1]) :
# save their difference
difference += (a[i + 1] - a[i]) - 1
# check for difference
# and given k
if (difference >= count) :
ans = a[i] + count
flag = 1
break
else :
count -= difference
# if found
if(flag) :
return ans
else :
return -1
# Driver code
# Input array
a = [1, 5, 11, 19]
# k-th missing element
# to be found in the array
k = 11
n = len(a)
# calling function to
# find missing element
missing = missingK(a, k, n)
print(missing)
# This code is contributed by
# Manish Shaw (manishshaw1)
Python3
# Python3 program for above approach
# Function to find
# kth missing number
def missingK(arr, k):
n = len(arr)
l = 0
u = n - 1
mid = 0
while(l <= u):
mid = (l + u)//2;
numbers_less_than_mid = arr[mid] - (mid + 1);
# If the total missing number
# count is equal to k we can iterate
# backwards for the first missing number
# and that will be the answer.
if(numbers_less_than_mid == k):
# To further optimize we check
# if the previous element's
# missing number count is equal
# to k. Eg: arr = [4,5,6,7,8]
# If you observe in the example array,
# the total count of missing numbers for all
# the indices are same, and we are
# aiming to narrow down the
# search window and achieve O(logn)
# time complexity which
# otherwise would've been O(n).
if(mid > 0 and (arr[mid - 1] - (mid)) == k):
u = mid - 1;
continue;
# Else we return arr[mid] - 1.
return arr[mid]-1;
# Here we appropriately
# narrow down the search window.
if(numbers_less_than_mid < k):
l = mid + 1;
elif(k < numbers_less_than_mid):
u = mid - 1;
# In case the upper limit is -ve
# it means the missing number set
# is 1,2,..,k and hence we directly return k.
if(u < 0):
return k;
# Else we find the residual count
# of numbers which we'd then add to
# arr[u] and get the missing kth number.
less = arr[u] - (u + 1);
k -= less;
# Return arr[u] + k
return arr[u] + k;
# Driver Code
if __name__=='__main__':
arr = [2,3,4,7,11];
k = 5;
# Function Call
print("Missing kth number = "+ str(missingK(arr, k)))
# This code is contributed by rutvik_56.
输出
14
时间复杂度: O(n),其中 n 是数组中元素的数量。
方法二:
应用二分搜索。由于数组已排序,我们可以在任何给定的索引处找到缺少多少数字,如 arr[index] – (index+1)。我们将利用这些知识并应用二进制搜索来缩小搜索范围,以找到更容易从中获取丢失数字的索引。
下面是上述方法的实现:
Python3
# Python3 program for above approach
# Function to find
# kth missing number
def missingK(arr, k):
n = len(arr)
l = 0
u = n - 1
mid = 0
while(l <= u):
mid = (l + u)//2;
numbers_less_than_mid = arr[mid] - (mid + 1);
# If the total missing number
# count is equal to k we can iterate
# backwards for the first missing number
# and that will be the answer.
if(numbers_less_than_mid == k):
# To further optimize we check
# if the previous element's
# missing number count is equal
# to k. Eg: arr = [4,5,6,7,8]
# If you observe in the example array,
# the total count of missing numbers for all
# the indices are same, and we are
# aiming to narrow down the
# search window and achieve O(logn)
# time complexity which
# otherwise would've been O(n).
if(mid > 0 and (arr[mid - 1] - (mid)) == k):
u = mid - 1;
continue;
# Else we return arr[mid] - 1.
return arr[mid]-1;
# Here we appropriately
# narrow down the search window.
if(numbers_less_than_mid < k):
l = mid + 1;
elif(k < numbers_less_than_mid):
u = mid - 1;
# In case the upper limit is -ve
# it means the missing number set
# is 1,2,..,k and hence we directly return k.
if(u < 0):
return k;
# Else we find the residual count
# of numbers which we'd then add to
# arr[u] and get the missing kth number.
less = arr[u] - (u + 1);
k -= less;
# Return arr[u] + k
return arr[u] + k;
# Driver Code
if __name__=='__main__':
arr = [2,3,4,7,11];
k = 5;
# Function Call
print("Missing kth number = "+ str(missingK(arr, k)))
# This code is contributed by rutvik_56.
输出
Missing kth number = 9
时间复杂度: O(logn),其中 n 是数组中元素的数量。
有关详细信息,请参阅有关排序数组中第 k 个缺失元素的完整文章!