numpy recarray.mean()函数| Python
在 numpy 中,数组可能具有包含字段的数据类型,类似于电子表格中的列。一个例子是[(a, int), (b, float)]
,其中数组中的每个条目都是一对 (int, float)。通常,使用诸如arr['a'] and arr['b']
类的字典查找来访问这些属性。记录数组允许使用arr.a and arr.b
作为数组成员访问字段。
numpy.recarray.mean()
函数返回沿给定轴的数组元素的平均值。
Syntax : numpy.recarray.mean(axis=None, dtype=None, out=None, keepdims=False)
Parameters:
axis : [None or int or tuple of ints, optional] Axis or axes along which to operate. By default, flattened input is used.
dtype : [data-type, optional] Type we desire while computing mean.
out : [ndarray, optional] A location into which the result is stored.
-> If provided, it must have a shape that the inputs broadcast to.
-> If not provided or None, a freshly-allocated array is returned.
keepdims : [bool, optional] If this is set to True, the axes which are reduced are left in the result as dimensions with size one.
Return : [ndarray or scalar] Arithmetic mean of the array (a scalar value if axis is none) or array with mean values along specified axis.
代码#1:
# Python program explaining
# numpy.recarray.mean() method
# importing numpy as geek
import numpy as geek
# creating input array with 2 different field
in_arr = geek.array([[(5.0, 2), (3.0, 6), (6.0, 10)],
[(9.0, 1), (5.0, 4), (-12.0, 7)]],
dtype =[('a', float), ('b', int)])
print ("Input array : ", in_arr)
# convert it to a record array,
# using arr.view(np.recarray)
rec_arr = in_arr.view(geek.recarray)
print("Record array of float: ", rec_arr.a)
print("Record array of int: ", rec_arr.b)
# applying recarray.mean methods
# to float record array along default axis
# i, e along flattened array
out_arr1 = rec_arr.a.mean()
# Mean of the flattened array
print("\nMean of float record array, axis = None : ", out_arr1)
# applying recarray.mean methods
# to float record array along axis 0
# i, e along vertical
out_arr2 = rec_arr.a.mean(axis = 0)
# Mean along 0 axis
print("\nMean of float record array, axis = 0 : ", out_arr2)
# applying recarray.mean methods
# to float record array along axis 1
# i, e along horizontal
out_arr3 = rec_arr.a.mean(axis = 1)
# Mean along 0 axis
print("\nMean of float record array, axis = 1 : ", out_arr3)
# applying recarray.mean methods
# to int record array along default axis
# i, e along flattened array
out_arr4 = rec_arr.b.mean(dtype ='int')
# Mean of the flattened array
print("\nMean of int record array, axis = None : ", out_arr4)
# applying recarray.mean methods
# to int record array along axis 0
# i, e along vertical
out_arr5 = rec_arr.b.mean(axis = 0)
# Mean along 0 axis
print("\nMean of int record array, axis = 0 : ", out_arr5)
# applying recarray.mean methods
# to int record array along axis 1
# i, e along horizontal
out_arr6 = rec_arr.b.mean(axis = 1)
# Mean along 0 axis
print("\nMean of int record array, axis = 1 : ", out_arr6)
Input array : [[( 5., 2) ( 3., 6) ( 6., 10)]
[( 9., 1) ( 5., 4) (-12., 7)]]
Record array of float: [[ 5. 3. 6.]
[ 9. 5. -12.]]
Record array of int: [[ 2 6 10]
[ 1 4 7]]
Mean of float record array, axis = None : 2.6666666666666665
Mean of float record array, axis = 0 : [ 7. 4. -3.]
Mean of float record array, axis = 1 : [4.66666667 0.66666667]
Mean of int record array, axis = None : 5
Mean of int record array, axis = 0 : [1.5 5. 8.5]
Mean of int record array, axis = 1 : [6. 4.]