numpy recarray.clip()函数| Python
在 numpy 中,数组可能具有包含字段的数据类型,类似于电子表格中的列。一个例子是[(a, int), (b, float)]
,其中数组中的每个条目都是一对 (int, float)。通常,使用诸如arr['a'] and arr['b']
类的字典查找来访问这些属性。
记录数组允许使用arr.a and arr.b
作为数组成员访问字段。 numpy.recarray.clip()
函数返回一个数组,其值限制为[min, max]
。必须给出 max 或 min 之一。
Syntax : numpy.recarray.clip(min=None, max=None, out=None)
Parameters:
min : Minimum value.
–> If None, clipping is not performed on lower interval edge. Not more than one of a_min and a_max may be None.
max : Maximum value.
–> If None, clipping is not performed on upper interval edge. Not more than one of a_min and a_max may be None.
–> If a_min or a_max are array_like, then the three arrays will be broadcasted to match their shapes.
out : Results will be placed in this array. It may be the input array for in-place clipping. out must be of the right shape to hold the output. Its type is preserved.
Return : [clipped_array, ndarray] An array where values less than minimum are replaced with min, and values greater then maximum with max.
代码#1:
# Python program explaining
# numpy.recarray.clip() method
# importing numpy as geek
import numpy as geek
# creating input array with 2 different field
in_arr = geek.array([[(5.0, 2), (3.0, -4), (6.0, 9)], [(9.0, 1), (5.0, 4), (-12.0, -7)]],
dtype =[('a', float), ('b', int)])
print ("Input array : ", in_arr)
# convert it to a record array, using arr.view(np.recarray)
rec_arr = in_arr.view(geek.recarray)
print("Record array of int: ", rec_arr.b)
# applying recarray.clip methods to float record array
float_rec_arr = rec_arr.a
print("Record array of float: ", float_rec_arr)
out_arr = (rec_arr.a).clip(min =-1.0, max = 5.0)
print ("Output clipped array : ", out_arr)
# applying recarray.clip methods to int record array
int_rec_arr = rec_arr.b
print("Record array of int: ", int_rec_arr)
out_arr = int_rec_arr.clip(min = 2, max = 6)
print ("Output clipped array : ", out_arr)
Input array : [[(5.0, 2) (3.0, -4) (6.0, 9)]
[(9.0, 1) (5.0, 4) (-12.0, -7)]]
Record array of int: [[ 2 -4 9]
[ 1 4 -7]]
Record array of float: [[ 5. 3. 6.]
[ 9. 5. -12.]]
Output clipped array : [[ 5. 3. 5.]
[ 5. 5. -1.]]
Record array of int: [[ 2 -4 9]
[ 1 4 -7]]
Output clipped array : [[2 2 6]
[2 4 2]]