📌  相关文章
📜  用于合并排序的链表的 C++ 程序

📅  最后修改于: 2022-05-13 01:56:08.770000             🧑  作者: Mango

用于合并排序的链表的 C++ 程序

合并排序通常是对链表进行排序的首选。链表的缓慢随机访问性能使得其他一些算法(如快速排序)表现不佳,而其他算法(如堆排序)则完全不可能。

排序图像

设 head 为要排序的链表的第一个节点, headRef 为指向 head 的指针。请注意,我们需要在 MergeSort() 中引用 head,因为下面的实现会更改下一个链接以对链表(不是节点处的数据)进行排序,因此如果原始头部的数据不是链表中的最小值。

MergeSort(headRef)
1) If the head is NULL or there is only one element in the Linked 
   List then return.
2) Else divide the linked list into two halves.  
      FrontBackSplit(head, &a, &b); /* a and b are two halves */
3) Sort the two halves a and b.
      MergeSort(a);
      MergeSort(b);
4) Merge the sorted a and b (using SortedMerge() discussed here) 
   and update the head pointer using headRef.
     *headRef = SortedMerge(a, b);
C++
// C++ code for linked list merged sort
#include 
using namespace std;
  
// Link list node 
class Node 
{
    public:
    int data;
    Node* next;
};
  
// Function prototypes 
Node* SortedMerge(Node* a, 
                  Node* b);
void FrontBackSplit(Node* source,
                    Node** frontRef, 
                    Node** backRef);
  
// Sorts the linked list by changing 
// next pointers (not data) 
void MergeSort(Node** headRef)
{
    Node* head = *headRef;
    Node* a;
    Node* b;
  
    // Base case -- length 0 or 1 
    if ((head == NULL) || 
        (head->next == NULL)) 
    {
        return;
    }
  
    /* Split head into 'a' and 'b' 
       sublists */
    FrontBackSplit(head, &a, &b);
  
    // Recursively sort the sublists 
    MergeSort(&a);
    MergeSort(&b);
  
    /* answer = merge the two sorted 
       lists together */
    *headRef = SortedMerge(a, b);
}
  
/* See https:// www.geeksforgeeks.org/?p=3622 
   for details of this function */
Node* SortedMerge(Node* a, Node* b)
{
    Node* result = NULL;
  
    // Base cases 
    if (a == NULL)
        return (b);
    else if (b == NULL)
        return (a);
  
    /* Pick either a or b, and 
       recur */
    if (a->data <= b->data) 
    {
        result = a;
        result->next = 
                SortedMerge(a->next, b);
    }
    else 
    {
        result = b;
        result->next = 
                SortedMerge(a, b->next);
    }
    return (result);
}
  
// UTILITY FUNCTIONS 
/* Split the nodes of the given list into 
   front and back halves, and return the two 
   lists using the reference parameters. If 
   the length is odd, the extra node should 
   go in the front list. Uses the fast/slow 
   pointer strategy. */
void FrontBackSplit(Node* source,
                    Node** frontRef, 
                    Node** backRef)
{
    Node* fast;
    Node* slow;
    slow = source;
    fast = source->next;
  
    /* Advance 'fast' two nodes, and 
       advance 'slow' one node */
    while (fast != NULL) 
    {
        fast = fast->next;
        if (fast != NULL) 
        {
            slow = slow->next;
            fast = fast->next;
        }
    }
  
    /* 'slow' is before the midpoint in 
        the list, so split it in two at 
        that point. */
    *frontRef = source;
    *backRef = slow->next;
    slow->next = NULL;
}
  
/* Function to print nodes in a 
   given linked list */
void printList(Node* node)
{
    while (node != NULL) 
    {
        cout << node->data << " ";
        node = node->next;
    }
}
  
/* Function to insert a node at the 
   beginning of the linked list */
void push(Node** head_ref, int new_data)
{
    // Allocate node 
    Node* new_node = new Node();
  
    // Put in the data 
    new_node->data = new_data;
  
    // Link the old list off the 
    // new node 
    new_node->next = (*head_ref);
  
    // Move the head to point to 
    // the new node 
    (*head_ref) = new_node;
}
  
// Driver code
int main()
{
    // Start with the empty list 
    Node* res = NULL;
    Node* a = NULL;
  
    /* Let us create a unsorted linked lists 
       to test the functions created lists shall 
       be a: 2->3->20->5->10->15 */
    push(&a, 15);
    push(&a, 10);
    push(&a, 5);
    push(&a, 20);
    push(&a, 3);
    push(&a, 2);
  
    // Sort the above created Linked List 
    MergeSort(&a);
  
    cout << "Sorted Linked List is: ";
    printList(a);
  
    return 0;
}
// This is code is contributed by rathbhupendra


C++
// C++ program to implement
// the above approach
#include
using namespace std;
  
// Node structure
struct Node
{
    int data;
    Node *next;
};
  
// Function to insert in list
void insert(int x, Node **head) 
{
    if(*head == NULL)
    {
        *head = new Node;
        (*head)->data = x;
        (*head)->next = NULL;
        return;
    }
  
    Node *temp = new Node;
    temp->data = (*head)->data;
    temp->next = (*head)->next;
    (*head)->data = x;
    (*head)->next = temp;
}
  
// Function to print the list
void print(Node *head) 
{
    Node *temp = head;
    while(temp != NULL) 
    {
        cout << temp->data << " ";
        temp = temp->next;
    }
}
  
Node *merge(Node *firstNode,
            Node *secondNode) 
{
    Node *merged = new Node;
    Node *temp = new Node;
     
    // Merged is equal to temp so in the 
    // end we have the top Node.
    merged = temp;
  
    // while either firstNode or secondNode 
    // becomes NULL
    while(firstNode != NULL && 
          secondNode != NULL) 
    {    
        if(firstNode->data <= 
           secondNode->data) 
        {
            temp->next = firstNode;
            firstNode = firstNode->next;
        }
          
        else 
        {
            temp->next = secondNode;
            secondNode = secondNode->next;
        }
        temp = temp->next;
    }
     
   // Any remaining Node in firstNode or 
   // secondNode gets inserted in the temp 
   // List
    while(firstNode!=NULL) 
    {
        temp->next = firstNode;
        firstNode = firstNode->next;
        temp = temp->next;
    }
  
    while(secondNode!=NULL) 
    {
        temp->next = secondNode;
        secondNode = secondNode->next;
        temp = temp->next;
    }
  
    // Return the head of the sorted list
    return merged->next;
}
  
// Function to calculate the middle 
// Element
Node *middle(Node *head) 
{
    Node *slow = head;
    Node *fast = head->next;
     
    while(slow->next != NULL && 
         (fast!=NULL && fast->next!=NULL)) 
    {
        slow = slow->next;
        fast = fast->next->next;
    }
    return slow;
}
  
// Function to sort the given list
Node *sort(Node *head)
{    
    if(head->next == NULL) 
    {
        return head;
    }
  
    Node *mid = new Node;
    Node *head2 = new Node;
    mid = middle(head);
    head2 = mid->next;   
    mid->next = NULL;
      
    // Recursive call to sort() hence diving 
    // our problem, and then merging the solution
    Node *finalhead = merge(sort(head),
                            sort(head2));  
    return finalhead;
}
  
int main(void) 
{
    Node *head = NULL;
    int n[] = {7, 10, 5, 20, 3, 2};
    for(int i = 0; i < 6; i++) 
    {
        // Inserting in the list
        insert(n[i], &head);   
    }
  
    cout << "Sorted Linked List is: ";
  
    // Printing the sorted list returned 
    // by sort()
    print(sort(head));     
    return 0;
}


输出:

Sorted Linked List is: 
2 3 5 10 15 20

时间复杂度: O(n*log n)

空间复杂度: O(n*log n)

方法 2:这种方法更简单,使用 log n 空间。

合并排序():

  1. 如果链表的大小为 1 则返回头部
  2. 使用龟兔赛跑方法找到中间点
  3. 将 mid 的下一个存储在 head2 中,即右子链表。
  4. 现在使下一个中点为空。
  5. 递归调用左右子链表的mergeSort(),存储左右链表的新头。
  6. 给定左右子链表的新头参数,调用merge(),并存储合并后返回的最终头。
  7. 返回合并链表的最终头。

合并(头1,头2):

  1. 取一个指针,说合并以将合并列表存储在其中并在其中存储一个虚拟节点。
  2. 取一个指针 temp 并为其分配合并。
  3. 如果 head1 的数据小于 head2 的数据,则将 head1 存储在 temp 的 next 中并将 head1 移动到 head1 的 next 中。
  4. 否则将 head2 存储在 temp 的下一个并将 head2 移动到 head2 的下一个。
  5. 将 temp 移到 temp 的下一个。
  6. 重复步骤 3、4 和 5,直到 head1 不等于 null 并且 head2 不等于 null。
  7. 现在将第一个或第二个链表的任何剩余节点添加到合并的链表中。
  8. 返回合并后的下一个(将忽略虚拟并返回最终合并链表的头部)

C++

// C++ program to implement
// the above approach
#include
using namespace std;
  
// Node structure
struct Node
{
    int data;
    Node *next;
};
  
// Function to insert in list
void insert(int x, Node **head) 
{
    if(*head == NULL)
    {
        *head = new Node;
        (*head)->data = x;
        (*head)->next = NULL;
        return;
    }
  
    Node *temp = new Node;
    temp->data = (*head)->data;
    temp->next = (*head)->next;
    (*head)->data = x;
    (*head)->next = temp;
}
  
// Function to print the list
void print(Node *head) 
{
    Node *temp = head;
    while(temp != NULL) 
    {
        cout << temp->data << " ";
        temp = temp->next;
    }
}
  
Node *merge(Node *firstNode,
            Node *secondNode) 
{
    Node *merged = new Node;
    Node *temp = new Node;
     
    // Merged is equal to temp so in the 
    // end we have the top Node.
    merged = temp;
  
    // while either firstNode or secondNode 
    // becomes NULL
    while(firstNode != NULL && 
          secondNode != NULL) 
    {    
        if(firstNode->data <= 
           secondNode->data) 
        {
            temp->next = firstNode;
            firstNode = firstNode->next;
        }
          
        else 
        {
            temp->next = secondNode;
            secondNode = secondNode->next;
        }
        temp = temp->next;
    }
     
   // Any remaining Node in firstNode or 
   // secondNode gets inserted in the temp 
   // List
    while(firstNode!=NULL) 
    {
        temp->next = firstNode;
        firstNode = firstNode->next;
        temp = temp->next;
    }
  
    while(secondNode!=NULL) 
    {
        temp->next = secondNode;
        secondNode = secondNode->next;
        temp = temp->next;
    }
  
    // Return the head of the sorted list
    return merged->next;
}
  
// Function to calculate the middle 
// Element
Node *middle(Node *head) 
{
    Node *slow = head;
    Node *fast = head->next;
     
    while(slow->next != NULL && 
         (fast!=NULL && fast->next!=NULL)) 
    {
        slow = slow->next;
        fast = fast->next->next;
    }
    return slow;
}
  
// Function to sort the given list
Node *sort(Node *head)
{    
    if(head->next == NULL) 
    {
        return head;
    }
  
    Node *mid = new Node;
    Node *head2 = new Node;
    mid = middle(head);
    head2 = mid->next;   
    mid->next = NULL;
      
    // Recursive call to sort() hence diving 
    // our problem, and then merging the solution
    Node *finalhead = merge(sort(head),
                            sort(head2));  
    return finalhead;
}
  
int main(void) 
{
    Node *head = NULL;
    int n[] = {7, 10, 5, 20, 3, 2};
    for(int i = 0; i < 6; i++) 
    {
        // Inserting in the list
        insert(n[i], &head);   
    }
  
    cout << "Sorted Linked List is: ";
  
    // Printing the sorted list returned 
    // by sort()
    print(sort(head));     
    return 0;
}

输出:

Sorted Linked List is: 
2 3 5 7 10 20 

时间复杂度:O(n*log n)

空间复杂度: O(log n)

有关详细信息,请参阅有关链接列表的合并排序的完整文章!