📌  相关文章
📜  Python程序合并 K 个已排序的链表 – 第 1 组

📅  最后修改于: 2022-05-13 01:56:56.414000             🧑  作者: Mango

Python程序合并 K 个已排序的链表 – 第 1 组

给定 K 个大小为 N 的已排序链表,将它们合并并打印排序后的输出。

例子:

Input: k = 3, n =  4
list1 = 1->3->5->7->NULL
list2 = 2->4->6->8->NULL
list3 = 0->9->10->11->NULL

Output: 0->1->2->3->4->5->6->7->8->9->10->11
Merged lists in a sorted order 
where every element is greater 
than the previous element.

Input: k = 3, n =  3
list1 = 1->3->7->NULL
list2 = 2->4->8->NULL
list3 = 9->10->11->NULL

Output: 1->2->3->4->7->8->9->10->11
Merged lists in a sorted order 
where every element is greater 
than the previous element.

方法1(简单):

方法:
一个简单的解决方案是将结果初始化为第一个列表。现在遍历从第二个列表开始的所有列表。将当前遍历列表的每个节点以排序的方式插入到结果中。

Python3
# Python3 program to merge k 
# sorted arrays of size n each
  
# A Linked List node
class Node:  
    def __init__(self, x):      
        self.data = x
        self.next = None
  
# Function to print nodes in a given 
# linked list 
def printList(node):
    
    while (node != None):
        print(node.data, 
              end = " ")
        node = node.next
  
# The main function that takes an 
# array of lists arr[0..last] and 
# generates the sorted output
def mergeKLists(arr, last):
  
    # Traverse form second 
    # list to last
    for i in range(1, last + 1):
        while (True):
            # head of both the lists,
            # 0 and ith list.
            head_0 = arr[0]
            head_i = arr[i]
  
            # Break if list ended
            if (head_i == None):
                break
  
            # Smaller than first 
            # element
            if (head_0.data >= 
                head_i.data):
                arr[i] = head_i.next
                head_i.next = head_0
                arr[0] = head_i
            else:
                # Traverse the first list
                while (head_0.next != None):
                    # Smaller than next 
                    # element
                    if (head_0.next.data >= 
                        head_i.data):
                        arr[i] = head_i.next
                        head_i.next = head_0.next
                        head_0.next = head_i
                        break
                    # go to next node
                    head_0 = head_0.next
                    # if last node
                    if (head_0.next == None):
                        arr[i] = head_i.next
                        head_i.next = None
                        head_0.next = head_i
                        head_0.next.next = None
                        break
    return arr[0]
  
# Driver code
if __name__ == '__main__':
    
    # Number of linked 
    # lists
    k = 3
      
    # Number of elements
    # in each list
    n = 4
  
    # an array of pointers 
    # storing the head nodes 
    # of the linked lists
    arr = [None for i in range(k)]
  
    arr[0] = Node(1)
    arr[0].next = Node(3)
    arr[0].next.next = Node(5)
    arr[0].next.next.next = Node(7)
  
    arr[1] = Node(2)
    arr[1].next = Node(4)
    arr[1].next.next = Node(6)
    arr[1].next.next.next = Node(8)
  
    arr[2] = Node(0)
    arr[2].next = Node(9)
    arr[2].next.next = Node(10)
    arr[2].next.next.next = Node(11)
  
    # Merge all lists
    head = mergeKLists(arr, k - 1)
  
    printList(head)
# This code is contributed by Mohit Kumar 29


Python3
# Python3 program to merge k sorted
# arrays of size n each
   
# A Linked List node
class Node:    
    def __init__(self):
          
        self.data = 0
        self.next = None
  
# Function to print nodes in a
# given linked list
def printList(node):
    while (node != None):
        print(node.data, end = ' ')
        node = node.next
      
# Takes two lists sorted in increasing order, 
# and merge their nodes together to make one 
# big sorted list. Below function takes 
# O(Log n) extra space for recursive calls,
# but it can be easily modified to work with
# same time and O(1) extra space 
def SortedMerge(a, b):
    result = None
   
    # Base cases 
    if (a == None):
        return(b)
    elif (b == None):
        return(a)
   
    # Pick either a or b, and recur 
    if (a.data <= b.data):
        result = a
        result.next = 
               SortedMerge(a.next, b)
    else:
        result = b
        result.next = 
               SortedMerge(a, b.next)
      
    return result
  
# The main function that takes an array 
# of lists arr[0..last] and generates 
# the sorted output
def mergeKLists(arr, last):
  
    # Repeat until only one list is left
    while (last != 0):
        i = 0
        j = last
   
        # (i, j) forms a pair
        while (i < j):
              
            # Merge List i with List j and store
            # merged list in List i
            arr[i] = SortedMerge(arr[i], arr[j])
   
            # Consider next pair
            i += 1
            j -= 1
              
            # If all pairs are merged, update last
            if (i >= j):
                last = j
   
    return arr[0]
  
# Utility function to create a new node.
def newNode(data):
  
    temp = Node()
    temp.data = data
    temp.next = None
    return temp
  
# Driver code
if __name__=='__main__':
      
    # Number of linked lists
    k = 3
      
    # Number of elements in each list
    n = 4 
   
    # An array of pointers storing the 
    # head nodes of the linked lists
    arr = [0 for i in range(k)]
   
    arr[0] = newNode(1)
    arr[0].next = newNode(3)
    arr[0].next.next = newNode(5)
    arr[0].next.next.next = newNode(7)
   
    arr[1] = newNode(2)
    arr[1].next = newNode(4)
    arr[1].next.next = newNode(6)
    arr[1].next.next.next = newNode(8)
   
    arr[2] = newNode(0)
    arr[2].next = newNode(9)
    arr[2].next.next = newNode(10)
    arr[2].next.next.next = newNode(11)
   
    # Merge all lists
    head = mergeKLists(arr, k - 1)
   
    printList(head)
  
# This code is contributed by rutvik_56


输出:

0 1 2 3 4 5 6 7 8 9 10 11

复杂性分析:

  • 时间复杂度: O(nk 2 )
  • 辅助空间: O(1)。
    因为不需要额外的空间。

方法2:最小堆
更好的解决方案是使用基于 Min Heap 的解决方案,这里讨论了数组。该解决方案的时间复杂度为O(nk Log k)
方法三:分而治之
在这篇文章中,讨论了分而治之的方法。这种方法不需要额外的堆空间并且工作在 O(nk Log k)
众所周知,两个链表的合并可以在 O(n) 时间和 O(n) 空间内完成。

  1. 这个想法是配对 K 个列表并使用 O(n) 空间在线性时间内合并每一对。
  2. 在第一个循环之后,剩下 K/2 个列表,每个列表的大小为 2*N。在第二个循环之后,留下 K/4 个列表,每个列表的大小为 4*N,依此类推。
  3. 重复这个过程,直到我们只剩下一个列表。

下面是上述思想的实现。

Python3

# Python3 program to merge k sorted
# arrays of size n each
   
# A Linked List node
class Node:    
    def __init__(self):
          
        self.data = 0
        self.next = None
  
# Function to print nodes in a
# given linked list
def printList(node):
    while (node != None):
        print(node.data, end = ' ')
        node = node.next
      
# Takes two lists sorted in increasing order, 
# and merge their nodes together to make one 
# big sorted list. Below function takes 
# O(Log n) extra space for recursive calls,
# but it can be easily modified to work with
# same time and O(1) extra space 
def SortedMerge(a, b):
    result = None
   
    # Base cases 
    if (a == None):
        return(b)
    elif (b == None):
        return(a)
   
    # Pick either a or b, and recur 
    if (a.data <= b.data):
        result = a
        result.next = 
               SortedMerge(a.next, b)
    else:
        result = b
        result.next = 
               SortedMerge(a, b.next)
      
    return result
  
# The main function that takes an array 
# of lists arr[0..last] and generates 
# the sorted output
def mergeKLists(arr, last):
  
    # Repeat until only one list is left
    while (last != 0):
        i = 0
        j = last
   
        # (i, j) forms a pair
        while (i < j):
              
            # Merge List i with List j and store
            # merged list in List i
            arr[i] = SortedMerge(arr[i], arr[j])
   
            # Consider next pair
            i += 1
            j -= 1
              
            # If all pairs are merged, update last
            if (i >= j):
                last = j
   
    return arr[0]
  
# Utility function to create a new node.
def newNode(data):
  
    temp = Node()
    temp.data = data
    temp.next = None
    return temp
  
# Driver code
if __name__=='__main__':
      
    # Number of linked lists
    k = 3
      
    # Number of elements in each list
    n = 4 
   
    # An array of pointers storing the 
    # head nodes of the linked lists
    arr = [0 for i in range(k)]
   
    arr[0] = newNode(1)
    arr[0].next = newNode(3)
    arr[0].next.next = newNode(5)
    arr[0].next.next.next = newNode(7)
   
    arr[1] = newNode(2)
    arr[1].next = newNode(4)
    arr[1].next.next = newNode(6)
    arr[1].next.next.next = newNode(8)
   
    arr[2] = newNode(0)
    arr[2].next = newNode(9)
    arr[2].next.next = newNode(10)
    arr[2].next.next.next = newNode(11)
   
    # Merge all lists
    head = mergeKLists(arr, k - 1)
   
    printList(head)
  
# This code is contributed by rutvik_56

输出:

0 1 2 3 4 5 6 7 8 9 10 11

复杂性分析:

假设 N(n*k) 是节点的总数,n 是每个链表的大小,k 是链表的总数。

  • 时间复杂度: O(N*log k) 或 O(n*k*log k)
    作为函数mergeKLists() 中的外部 while 循环运行 log k 次,并且每次它处理 n*k 个元素。
  • 辅助空间: O(N) 或 O(n*k)
    因为在 SortedMerge() 中使用了递归并合并最后 2 个大小为 N/2 的链表,所以将进行 N 次递归调用。

请参阅有关 Merge K 排序链表的完整文章 |设置 1 了解更多详情!