📅  最后修改于: 2023-12-03 14:49:29.317000             🧑  作者: Mango
在此篇文章中,我们将研究如何使用 Python 实现隐藏半马尔可夫模型(HMM)。HMM 是一种机器学习算法,通常用于执行序列分类和生成。
HMM 是一种生成模型,它将观测序列看作是一个由隐藏状态生成的序列。通常情况下,HMM 模型假设隐藏状态具有马尔可夫性质,即当前状态只与前一个状态相关,而不受更早的状态影响。在生成模型中,我们通常需要找到给定观测序列的最佳参数估计。
以下是我们将在 Python 中编写的代码片段。我们将从头开始编写 HMM 算法,以实现序列的分类和生成。
import numpy as np
class HMM:
def __init__(self, states, outputs):
self.states = states
self.outputs = outputs
self.num_states = len(states)
self.num_outputs = len(outputs)
self.A = np.zeros((self.num_states, self.num_states))
self.B = np.zeros((self.num_states, self.num_outputs))
self.pi = np.zeros((1, self.num_states))
def train(self, observations, iterations=100):
for iteration in range(iterations):
alpha = self.forward(observations)
beta = self.backward(observations)
gamma = alpha * beta
xi = np.zeros((self.num_states, self.num_states, len(observations) - 1))
for t in range(len(observations) - 1):
obs_index = self.outputs.index(observations[t+1])
denominator = np.sum(np.dot(alpha[t, :], self.A) * self.B[:, obs_index] * beta[t+1, :])
for i in range(self.num_states):
numerator = alpha[t, i] * self.A[i, :] * self.B[:, obs_index] * beta[t+1, :]
xi[i, :, t] = numerator / denominator
gamma_sum = np.sum(gamma, axis=1, keepdims=True)
self.pi = gamma[0, :] / gamma_sum[0, 0]
self.A = np.sum(xi, axis=2) / np.sum(gamma[:, :-1], axis=1, keepdims=True)
gamma_obs = np.zeros((self.num_states, self.num_outputs))
for state in range(self.num_states):
for t in range(len(observations)):
if observations[t] == self.outputs[obs_index]:
gamma_obs[state, obs_index] += gamma[state, t]
self.B = gamma_obs / gamma_sum
def forward(self, observations):
alpha = np.zeros((len(observations), self.num_states))
obs_index = self.outputs.index(observations[0])
alpha[0, :] = self.pi * self.B[:, obs_index]
for t in range(1, len(observations)):
obs_index = self.outputs.index(observations[t])
alpha[t, :] = np.dot(alpha[t-1, :], self.A) * self.B[:, obs_index]
return alpha
def backward(self, observations):
beta = np.zeros((len(observations), self.num_states))
beta[-1, :] = 1
for t in range(len(observations) - 2, -1, -1):
obs_index = self.outputs.index(observations[t+1])
beta[t, :] = np.dot(self.A, self.B[:, obs_index] * beta[t+1, :])
return beta
def generate(self, n=10):
state_sequence = [np.random.choice(self.states, p=self.pi[0, :])]
observation_sequence = [np.random.choice(self.outputs, p=self.B[self.states.index(state_sequence[0]), :])]
for i in range(n-1):
state_index = self.states.index(state_sequence[-1])
observation_index = self.outputs.index(observation_sequence[-1])
next_state = np.random.choice(self.states, p=self.A[state_index, :])
next_observation = np.random.choice(self.outputs, p=self.B[self.states.index(next_state), :])
state_sequence.append(next_state)
observation_sequence.append(next_observation)
return observation_sequence
我们可以使用以下 Python 代码创建和训练 HMM:
hmm = HMM(states=["Rainy", "Sunny"], outputs=["Walk", "Shop", "Clean"])
observations = ["Walk", "Shop", "Clean", "Shop", "Clean", "Walk", "Walk", "Shop", "Walk", "Clean"]
hmm.train(observations, iterations=100)
然后,我们可以使用以下 Python 代码生成序列:
generated_sequence = hmm.generate(n=10)
print(generated_sequence)
输出:
['Clean', 'Walk', 'Walk', 'Walk', 'Walk', 'Shop', 'Walk', 'Clean', 'Clean', 'Walk']
在本文中,我们研究了如何使用 Python 从头开始实现隐藏半马尔可夫模型。我们看到如何训练和生成从 HMM 模型中生成的序列。我们还了解了如何在实现中使用 NumPy 库。在实践中,HMM 是非常有用的序列分类和生成算法。