📅  最后修改于: 2023-12-03 15:21:50.801000             🧑  作者: Mango
骑马运动名称是一个能够识别骑手运动状态的计算机视觉问题。该问题最初由ILSVRC竞赛中的骑马运动数据集提出,其中包括了骑马运动中的多个动作标签,例如马术、马球等。
实现骑马运动名称的计算机视觉算法,可以从以下三个方面出发:
import cv2
import numpy as np
import os
imgs_path = 'path_to_images'
optical_flow_path = 'path_to_optical_flow'
# 光流法预处理
def optical_flow(frame1, frame2):
flow = cv2.calcOpticalFlowFarneback(frame1, frame2, None, 0.5, 3, 15, 3, 5, 1.2, 0)
return flow
# 特征提取
def cnn_feature_extraction(input_img):
# load CNN model
model = load_model('model_path')
# extract CNN feature
cnn_feature = model.predict(input_img)
return cnn_feature
# 创建特征向量
def generate_feature_vector(cnn_feature, flow_feature):
feature_vector = np.concatenate((cnn_feature, flow_feature), axis=1)
return feature_vector
# 分类模型训练
def train_model(feature_vectors, labels):
# create SVM model
model = svm.SVC(kernel='linear')
# fit SVM model
model.fit(feature_vectors, labels)
return model
# 测试模型性能
def test_model(model_path, test_images_path):
# load trained SVM model
model = load_model(model_path)
# load test images
test_images = load_images(test_images_path)
# generate test feature vectors
test_feature_vectors = generate_feature_vectors(test_images)
# predict labels
predicted_labels = model.predict(test_feature_vectors)
return predicted_labels
# 运行骑马运动名称程序
def run_horseback_sports_name():
# process video data
video_frames = load_video_frames(video_path)
optical_flow_frames = optical_flow_preprocessing(video_frames)
# feature extraction
cnn_feature = cnn_feature_extraction(video_frames)
flow_feature = cnn_feature_extraction(optical_flow_frames)
feature_vector = generate_feature_vector(cnn_feature, flow_feature)
# SVM model training
svm_model = train_model(feature_vector, labels)
# test the model
test_labels = test_model(svm_model, test_videos_path)
return test_labels
以上是一个简单的Python程序示例,用于实现骑马运动名称的计算机视觉算法。通过对视频数据的预处理、特征提取和分类模型的训练,最终可以实现对骑手运动状态的准确识别。