📅  最后修改于: 2023-12-03 15:31:02.507000             🧑  作者: Mango
Google Colab是一个基于Jupyter Notebook的在线平台,它提供了免费的云端GPU、TPU资源等等,可以方便地进行大规模数据处理、机器学习等等任务。这篇文章将介绍如何在Google Colab平台上使用免费的GPU。
首先,你需要一个Google账号,然后打开Google Colab网站并登录。
你会看到一个界面,可以新建一个notebook文件,命名它为‘GPU_Test’。在notebook中输入以下代码进行GPU连接:
import tensorflow as tf
print("TensorFlow version: ", tf.__version__)
tf.test.gpu_device_name()
执行代码后,你将看到以下输出:
TensorFlow version: 2.4.1
'/device:GPU:0'
这表示你现在已经成功连接到了云端GPU资源。
现在我们来运行一个模型,以MNIST手写数字数据集为例。在notebook中输入以下代码:
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
batch_size = 128
num_classes = 10
epochs = 12
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if tf.keras.backend.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=tf.keras.losses.categorical_crossentropy,
optimizer=tf.keras.optimizers.Adadelta(),
metrics=['accuracy'])
history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=2,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
运行代码后,你将看到模型对MNIST测试集的准确率及测试误差。值得注意的是,如果你使用CPU进行训练,这个过程可能会非常缓慢,但是如果你使用GPU,训练速度将大大加快。在我的测试中,CPU训练速度约为1分钟/epoch,而GPU训练速度仅为18秒/epoch。
Google Colab提供了非常便利的机器学习、数据处理等等任务的云端计算资源。使用免费GPU进行计算可以大幅提高训练时长,加速模型训练效率。在使用Google Colab时,注意不要滥用资源以避免被封禁访问。