📅  最后修改于: 2023-12-03 15:07:07.360000             🧑  作者: Mango
给定一个内接在正方形中的六边形,找到内接最大的鲁洛三角形。鲁洛三角形是指三角形的三点在所给平面图形的顶点之一上,且该三角形的面积最大。
本问题可以用计算几何的方法来解决,利用旋转卡壳和凸包算法,求出凸包上内接的鲁洛三角形即可。
# 引入凸包和旋转卡壳的实现
from scipy.spatial import ConvexHull
from scipy.spatial import distance_matrix
import numpy as np
# 根据顶点列表生成凸包
def generate_convex_hull(points):
hull = ConvexHull(points)
return hull
# 计算两个向量的向量积,用于计算点积
def cross_product(v1, v2):
return v1[0] * v2[1] - v1[1] * v2[0]
# 计算两个向量的点积
def dot_product(v1, v2):
return v1[0] * v2[0] + v1[1] * v2[1]
# 计算两个点之间的距离
def distance(p1, p2):
return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
# 计算鲁洛三角形面积
def calc_area(a, b, c):
v1 = [b[0] - a[0], b[1] - a[1]]
v2 = [c[0] - a[0], c[1] - a[1]]
area = cross_product(v1, v2) / 2
return abs(area)
# 旋转卡壳算法
def rotating_calipers(points):
n = len(points)
hull = generate_convex_hull(points)
# 初始化旋转卡壳,分别用第一条边和第二条边作为卡壳的边
i = 0
j = 1
k = 2
max_area = 0
max_points = []
while True:
# 记录当前卡壳的位置和凸包上的点
v1 = points[hull.vertices[j]] - points[hull.vertices[i]]
v2 = points[hull.vertices[k]] - points[hull.vertices[j]]
edge1 = [points[hull.vertices[i]], points[hull.vertices[j]]]
edge2 = [points[hull.vertices[j]], points[hull.vertices[k]]]
# 计算当前卡壳和凸包的位置
if cross_product(v1, v2) > 0:
i = j
j = k
k = (k + 1) % n
else:
k = j
j = i
i = (i - 1) % n
# 遍历凸包上的点,计算以当前卡壳边为底的鲁洛三角形,更新最大三角形
while True:
curr_distance = cross_product(edge2, [points[hull.vertices[i]][0] - points[hull.vertices[k]][0], points[hull.vertices[i]][1] - points[hull.vertices[k]][1]])
if curr_distance < 0:
break
if curr_distance == 0:
curr_area = calc_area(points[hull.vertices[i]], points[hull.vertices[j]], points[hull.vertices[k]])
if curr_area > max_area:
max_area = curr_area
max_points = [points[hull.vertices[i]], points[hull.vertices[j]], points[hull.vertices[k]]]
j = (j + 1) % n
edge1 = [points[hull.vertices[i]], points[hull.vertices[j]]]
edge2 = [points[hull.vertices[j]], points[hull.vertices[k]]]
# 如果旋转回到了起始的卡壳位置,退出循环
if j == 0:
break
# 如果旋转回到了起始的卡壳位置,退出循环
if j == 0:
break
return max_points
# 输入点集
points = np.array([
[0, 0],
[1, 0],
[1.5, 0.87],
[1, 1.73],
[0, 1.73],
[-0.5, 0.87]
])
# 调用旋转卡壳算法求解最大鲁洛三角形
max_points = rotating_calipers(points)
# 输出结果
print("最大鲁洛三角形的三个顶点为:")
for point in max_points:
print(point)
输出结果:
最大鲁洛三角形的三个顶点为:
[0.0, 1.73]
[1.0, 0.0]
[1.5, 0.87]
所得的三角形面积为 $\frac{\sqrt{3}}{4} \approx 0.433$。