Python| TensorFlow sinh() 方法
Tensorflow 是谷歌开发的开源机器学习库。它的应用之一是开发深度神经网络。
模块tensorflow.math
为许多基本的数学运算提供支持。函数tf.sinh()
[别名tf.math.sinh
] 为 Tensorflow 中的双曲正弦函数提供支持。它期望以弧度形式输入。输入类型是张量,如果输入包含多个元素,则计算元素级双曲正弦。
Syntax: tf.sinh(x, name=None) or tf.math.sinh(x, name=None)
Parameters:
x: A tensor of any of the following types: float16, float32, float64, complex64, or complex128.
name (optional): The name for the operation.
Return type: A tensor with the same type as that of x.
代码#1:
Python3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5],
dtype = tf.float32)
# Applying the sinh function and
# storing the result in 'b'
b = tf.sinh(a, name ='sinh')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
# Applying the hyperbolic sine function and
# storing the result in 'b'
b = tf.sinh(a, name ='sinh')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.sinh")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input type: Tensor("Const_3:0", shape=(6, ), dtype=float32)
Input: [ 1. -0.5 3.4 -2.1 0. -6.5]
Return type: Tensor("sinh:0", shape=(6, ), dtype=float32)
Output: [ 1.1752012 -0.5210953 14.965365 -4.0218563 0.
-332.57004 ]
代码 #2:可视化
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -5 to 5
a = np.linspace(-5, 5, 15)
# Applying the hyperbolic sine function and
# storing the result in 'b'
b = tf.sinh(a, name ='sinh')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.sinh")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input: [-5. -4.28571429 -3.57142857 -2.85714286 -2.14285714 -1.42857143
-0.71428571 0. 0.71428571 1.42857143 2.14285714 2.85714286
3.57142857 4.28571429 5. ]
Output: [-74.20321058 -36.32033021 -17.76962587 -8.67713772 -4.20321865
-1.96654142 -0.77659271 0. 0.77659271 1.96654142
4.20321865 8.67713772 17.76962587 36.32033021 74.20321058]