Numpy MaskedArray.masked_invalid()函数| Python
在许多情况下,数据集可能不完整或因存在无效数据而受到污染。例如,传感器可能无法记录数据,或记录无效值。 numpy.ma
模块通过引入掩码数组提供了一种解决此问题的便捷方法。掩码数组是可能缺少或无效条目的数组。
numpy.MaskedArray.masked_invalid()
函数用于屏蔽出现无效值(NaNs 或 infs)的数组。此函数是masked_where
的快捷方式, condition = ~(numpy.isfinite(arr))
。
Syntax : numpy.ma.masked_invalid(arr, copy=True)
Parameters:
arr : [ndarray] Input array which we want to mask.
copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view.
Return : [ MaskedArray] The resultant array after masking.
代码#1:
# Python program explaining
# numpy.MaskedArray.masked_invalid() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array with invalid values
in_arr = geek.array([1, 2, geek.nan, -1, geek.inf])
print ("Input array : ", in_arr)
# applying MaskedArray.masked_invalid
# methods to input array
mask_arr = ma.masked_invalid(in_arr)
print ("Masked array : ", mask_arr)
输出:
Input array : [ 1. 2. nan -1. inf]
Masked array : [1.0 2.0 -- -1.0 --]
代码#2:
# Python program explaining
# numpy.MaskedArray.masked_invalid() method
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
# creating input array with invalid element
in_arr = geek.array([5e8, 3e-5, geek.nan, 4e4, 5e2])
print ("Input array : ", in_arr)
# applying MaskedArray.masked_invalid
# methods to input array
mask_arr = ma.masked_invalid(in_arr)
print ("Masked array : ", mask_arr)
输出:
Input array : [5.e+08 3.e-05 nan 4.e+04 5.e+02]
Masked array : [500000000.0 3e-05 -- 40000.0 500.0]