📜  Numpy MaskedArray.masked_invalid()函数| Python

📅  最后修改于: 2022-05-13 01:54:19.654000             🧑  作者: Mango

Numpy MaskedArray.masked_invalid()函数| Python

在许多情况下,数据集可能不完整或因存在无效数据而受到污染。例如,传感器可能无法记录数据,或记录无效值。 numpy.ma模块通过引入掩码数组提供了一种解决此问题的便捷方法。掩码数组是可能缺少或无效条目的数组。

numpy.MaskedArray.masked_invalid()函数用于屏蔽出现无效值(NaNs 或 infs)的数组。此函数是masked_where的快捷方式, condition = ~(numpy.isfinite(arr))

代码#1:

# Python program explaining
# numpy.MaskedArray.masked_invalid() method 
  
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
  
# creating input array with invalid values
in_arr = geek.array([1, 2, geek.nan, -1, geek.inf])
print ("Input array : ", in_arr)
  
# applying MaskedArray.masked_invalid  
# methods to input array 
mask_arr = ma.masked_invalid(in_arr)
print ("Masked array : ", mask_arr)
输出:
Input array :  [ 1.  2. nan -1. inf]
Masked array :  [1.0 2.0 -- -1.0 --]

代码#2:

# Python program explaining
# numpy.MaskedArray.masked_invalid() method 
  
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
  
# creating input array with invalid element
in_arr = geek.array([5e8, 3e-5, geek.nan, 4e4, 5e2])
print ("Input array : ", in_arr)
  
# applying MaskedArray.masked_invalid  
# methods to input array 
mask_arr = ma.masked_invalid(in_arr)
print ("Masked array : ", mask_arr)
输出:
Input array :  [5.e+08 3.e-05    nan 4.e+04 5.e+02]
Masked array :  [500000000.0 3e-05 -- 40000.0 500.0]