📜  查找第 K 个最大和连续子数组的 C++ 程序

📅  最后修改于: 2022-05-13 01:55:51.568000             🧑  作者: Mango

查找第 K 个最大和连续子数组的 C++ 程序

给定一个整数数组。编写一个程序,在具有负数和正数的数字数组中找到连续子数组的第 K 个最大和。

例子:

Input: a[] = {20, -5, -1} 
         k = 3
Output: 14
Explanation: All sum of contiguous 
subarrays are (20, 15, 14, -5, -6, -1) 
so the 3rd largest sum is 14.

Input: a[] = {10, -10, 20, -40} 
         k = 6
Output: -10 
Explanation: The 6th largest sum among 
sum of all contiguous subarrays is -10.

蛮力方法是将所有连续的和存储在另一个数组中,然后对其进行排序并打印第 k 个最大的值。但是在元素数量很大的情况下,我们存储连续和的数组将耗尽内存,因为连续子数组的数量会很大(二次顺序)

一种有效的方法是将数组的预和存储在 sum[] 数组中。我们可以找到从索引 i 到 j 的连续子数组的总和为 sum[j]-sum[i-1]

现在为了存储第 K 个最大的和,使用一个最小堆(优先队列),我们在其中推送连续的和直到我们得到 K 个元素,一旦我们有了 K 个元素,检查元素是否大于它插入的第 K 个元素弹出最小堆中顶部元素的最小堆,否则不插入。最后,最小堆中的顶部元素将是您的答案。

下面是上述方法的实现。

C++
// CPP program to find the k-th largest sum
// of subarray
#include 
using namespace std;
  
// function to calculate kth largest element
// in contiguous subarray sum
int kthLargestSum(int arr[], int n, int k)
{
    // array to store predix sums
    int sum[n + 1];
    sum[0] = 0;
    sum[1] = arr[0];
    for (int i = 2; i <= n; i++)
        sum[i] = sum[i - 1] + arr[i - 1];
  
    // priority_queue of min heap
    priority_queue, greater > Q;
  
    // loop to calculate the contiguous subarray
    // sum position-wise
    for (int i = 1; i <= n; i++)
    {
  
        // loop to traverse all positions that
        // form contiguous subarray
        for (int j = i; j <= n; j++)
        {
            // calculates the contiguous subarray
            // sum from j to i index
            int x = sum[j] - sum[i - 1];
  
            // if queue has less then k elements,
            // then simply push it
            if (Q.size() < k)
                Q.push(x);
  
            else
            {
                // it the min heap has equal to
                // k elements then just check
                // if the largest kth element is
                // smaller than x then insert
                // else its of no use
                if (Q.top() < x)
                {
                    Q.pop();
                    Q.push(x);
                }
            }
        }
    }
  
    // the top element will be then kth
    // largest element
    return Q.top();
}
  
// Driver program to test above function
int main()
{
    int a[] = { 10, -10, 20, -40 };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 6;
  
    // calls the function to find out the
    // k-th largest sum
    cout << kthLargestSum(a, n, k);
    return 0;
}


输出:

-10

时间复杂度: O(n^2 log (k))
辅助空间:最小堆的 O(k),我们可以将 sum 数组存储在数组本身中,因为它没有用。
有关详细信息,请参阅有关 K-th Largest Sum Contiguous Subarray 的完整文章!