查找第 K 个最大和连续子数组的 Python3 程序
给定一个整数数组。编写一个程序,在具有负数和正数的数字数组中找到连续子数组的第 K 个最大和。
例子:
Input: a[] = {20, -5, -1}
k = 3
Output: 14
Explanation: All sum of contiguous
subarrays are (20, 15, 14, -5, -6, -1)
so the 3rd largest sum is 14.
Input: a[] = {10, -10, 20, -40}
k = 6
Output: -10
Explanation: The 6th largest sum among
sum of all contiguous subarrays is -10.
蛮力方法是将所有连续的和存储在另一个数组中,然后对其进行排序并打印第 k 个最大的值。但是在元素数量很大的情况下,我们存储连续和的数组将耗尽内存,因为连续子数组的数量会很大(二次顺序)
一种有效的方法是将数组的预和存储在 sum[] 数组中。我们可以找到从索引 i 到 j 的连续子数组的总和为 sum[j]-sum[i-1]
现在为了存储第 K 个最大的和,使用一个最小堆(优先队列),我们在其中推送连续的和直到我们得到 K 个元素,一旦我们有了 K 个元素,检查元素是否大于它插入的第 K 个元素弹出最小堆中顶部元素的最小堆,否则不插入。最后,最小堆中的顶部元素将是您的答案。
下面是上述方法的实现。
Python3
# Python program to find the k-th largest sum
# of subarray
import heapq
# function to calculate kth largest element
# in contiguous subarray sum
def kthLargestSum(arr, n, k):
# array to store predix sums
sum = []
sum.append(0)
sum.append(arr[0])
for i in range(2, n + 1):
sum.append(sum[i - 1] + arr[i - 1])
# priority_queue of min heap
Q = []
heapq.heapify(Q)
# loop to calculate the contiguous subarray
# sum position-wise
for i in range(1, n + 1):
# loop to traverse all positions that
# form contiguous subarray
for j in range(i, n + 1):
x = sum[j] - sum[i - 1]
# if queue has less then k elements,
# then simply push it
if len(Q) < k:
heapq.heappush(Q, x)
else:
# it the min heap has equal to
# k elements then just check
# if the largest kth element is
# smaller than x then insert
# else its of no use
if Q[0] < x:
heapq.heappop(Q)
heapq.heappush(Q, x)
# the top element will be then kth
# largest element
return Q[0]
# Driver program to test above function
a = [10,-10,20,-40]
n = len(a)
k = 6
# calls the function to find out the
# k-th largest sum
print(kthLargestSum(a,n,k))
# This code is contributed by Kumar Suman
输出:
-10
时间复杂度: O(n^2 log (k))
辅助空间:最小堆的 O(k),我们可以将 sum 数组存储在数组本身中,因为它没有用。
有关详细信息,请参阅有关 K-th Largest Sum Contiguous Subarray 的完整文章!