最大和连续子数组的Java程序
编写一个高效的程序,在具有最大和的一维数字数组中找到连续子数组的和。
Kadane算法:
Initialize:
max_so_far = INT_MIN
max_ending_here = 0
Loop for each element of the array
(a) max_ending_here = max_ending_here + a[i]
(b) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
(c) if(max_ending_here < 0)
max_ending_here = 0
return max_so_far
解释:
Kadane 算法的简单思想是查找数组的所有正连续段(max_ending_here 用于此)。并跟踪所有正段之间的最大和连续段(max_so_far 用于此)。每次我们得到一个正和时,将它与 max_so_far 进行比较,如果它大于 max_so_far 则更新 max_so_far
Lets take the example:
{-2, -3, 4, -1, -2, 1, 5, -3}
max_so_far = max_ending_here = 0
for i=0, a[0] = -2
max_ending_here = max_ending_here + (-2)
Set max_ending_here = 0 because max_ending_here < 0
for i=1, a[1] = -3
max_ending_here = max_ending_here + (-3)
Set max_ending_here = 0 because max_ending_here < 0
for i=2, a[2] = 4
max_ending_here = max_ending_here + (4)
max_ending_here = 4
max_so_far is updated to 4 because max_ending_here greater
than max_so_far which was 0 till now
for i=3, a[3] = -1
max_ending_here = max_ending_here + (-1)
max_ending_here = 3
for i=4, a[4] = -2
max_ending_here = max_ending_here + (-2)
max_ending_here = 1
for i=5, a[5] = 1
max_ending_here = max_ending_here + (1)
max_ending_here = 2
for i=6, a[6] = 5
max_ending_here = max_ending_here + (5)
max_ending_here = 7
max_so_far is updated to 7 because max_ending_here is
greater than max_so_far
for i=7, a[7] = -3
max_ending_here = max_ending_here + (-3)
max_ending_here = 4
程序:
Java
import java.io.*;
// Java program to print largest contiguous array sum
import java.util.*;
class Kadane
{
public static void main (String[] args)
{
int [] a = {-2, -3, 4, -1, -2, 1, 5, -3};
System.out.println("Maximum contiguous sum is " +
maxSubArraySum(a));
}
static int maxSubArraySum(int a[])
{
int size = a.length;
int max_so_far = Integer.MIN_VALUE, max_ending_here = 0;
for (int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
if (max_ending_here < 0)
max_ending_here = 0;
}
return max_so_far;
}
}
Java
static int maxSubArraySum(int a[],int size)
{
int max_so_far = a[0], max_ending_here = 0;
for (int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_ending_here < 0)
max_ending_here = 0;
/* Do not compare for all
elements. Compare only
when max_ending_here > 0 */
else if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
return max_so_far;
}
// This code is contributed by ANKITRAI1
Java
// Java program to print largest contiguous
// array sum
import java.io.*;
class GFG {
static int maxSubArraySum(int a[], int size)
{
int max_so_far = a[0];
int curr_max = a[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.max(a[i], curr_max+a[i]);
max_so_far = Math.max(max_so_far, curr_max);
}
return max_so_far;
}
/* Driver program to test maxSubArraySum */
public static void main(String[] args)
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = a.length;
int max_sum = maxSubArraySum(a, n);
System.out.println("Maximum contiguous sum is "
+ max_sum);
}
}
// This code is contributed by Prerna Saini
Java
// Java program to print largest
// contiguous array sum
class GFG {
static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0,start = 0,
end = 0, s = 0;
for (int i = 0; i < size; i++)
{
max_ending_here += a[i];
if (max_so_far < max_ending_here)
{
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0)
{
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}
// Driver code
public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}
// This code is contributed by prerna saini
输出:
Maximum contiguous sum is 7
另一种方法:
Java
static int maxSubArraySum(int a[],int size)
{
int max_so_far = a[0], max_ending_here = 0;
for (int i = 0; i < size; i++)
{
max_ending_here = max_ending_here + a[i];
if (max_ending_here < 0)
max_ending_here = 0;
/* Do not compare for all
elements. Compare only
when max_ending_here > 0 */
else if (max_so_far < max_ending_here)
max_so_far = max_ending_here;
}
return max_so_far;
}
// This code is contributed by ANKITRAI1
时间复杂度: O(n)
算法范式:动态规划
以下是Mohit Kumar建议的另一个简单实现。当数组中的所有数字都是负数时,该实现会处理这种情况。
Java
// Java program to print largest contiguous
// array sum
import java.io.*;
class GFG {
static int maxSubArraySum(int a[], int size)
{
int max_so_far = a[0];
int curr_max = a[0];
for (int i = 1; i < size; i++)
{
curr_max = Math.max(a[i], curr_max+a[i]);
max_so_far = Math.max(max_so_far, curr_max);
}
return max_so_far;
}
/* Driver program to test maxSubArraySum */
public static void main(String[] args)
{
int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};
int n = a.length;
int max_sum = maxSubArraySum(a, n);
System.out.println("Maximum contiguous sum is "
+ max_sum);
}
}
// This code is contributed by Prerna Saini
输出:
Maximum contiguous sum is 7
为了打印具有最大和的子数组,我们在获得最大和时维护索引。
Java
// Java program to print largest
// contiguous array sum
class GFG {
static void maxSubArraySum(int a[], int size)
{
int max_so_far = Integer.MIN_VALUE,
max_ending_here = 0,start = 0,
end = 0, s = 0;
for (int i = 0; i < size; i++)
{
max_ending_here += a[i];
if (max_so_far < max_ending_here)
{
max_so_far = max_ending_here;
start = s;
end = i;
}
if (max_ending_here < 0)
{
max_ending_here = 0;
s = i + 1;
}
}
System.out.println("Maximum contiguous sum is "
+ max_so_far);
System.out.println("Starting index " + start);
System.out.println("Ending index " + end);
}
// Driver code
public static void main(String[] args)
{
int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };
int n = a.length;
maxSubArraySum(a, n);
}
}
// This code is contributed by prerna saini
输出:
Maximum contiguous sum is 7
Starting index 2
Ending index 6
Kadane 的算法既可以被视为贪心算法,也可以被视为 DP。正如我们所看到的,我们正在保持整数的运行总和,当它小于 0 时,我们将其重置为 0(贪婪部分)。这是因为继续负总和比重新开始新范围更糟糕。现在它也可以被视为一个 DP,在每个阶段我们有 2 个选择:要么获取当前元素并继续之前的总和,要么重新开始一个新的范围。这两个选择都在实施过程中得到照顾。
时间复杂度: O(n)
辅助空间: O(1)
现在试试下面的问题
给定一个整数数组(可能某些元素为负数),编写一个 C 程序,通过将数组中 n ≤ ARRAY_SIZE 的“n”个连续整数相乘来找出*最大乘积*。另外,打印最大乘积子数组的起点。