📜  scipy stats.hypsecant() | Python

📅  最后修改于: 2022-05-13 01:54:37.210000             🧑  作者: Mango

scipy stats.hypsecant() | Python

scipy.stats.hypsecant()是一个双曲正割连续随机变量。为了完成其规范,它使用标准格式和一些形状参数进行定义。概率密度以“标准化”形式定义。

参数 :

-> α : scale
-> β : shape
-> μ : location
代码#1:创建双曲正割连续随机变量
from scipy.stats import hypsecant  
   
numargs = hypsecant.numargs
[] = [0.7, 0.4] * numargs
rv = hypsecant ()
   
print ("RV : \n", rv) 

输出:

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB588A160

代码 #2:双曲割线连续变量和概率分布

import numpy as np
quantile = np.arange (0.01, 1, 0.1)
    
# Random Variates
R = hypsecant .rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
   
# PDF
R = hypsecant .pdf(quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

输出:

Random Variates : 
 [ 0.50120826  0.60225476 -0.38307417  7.15799321 -1.1929279  -2.03152053
 -0.07410646  1.79859597 -3.14724818  2.03731139]

Probability Distribution : 
 [0.31829397 0.31639377 0.31141785 0.30360449 0.2933099  0.28097073
 0.26706289 0.25206321 0.23641852 0.22052427]

代码#3:图形表示。

import numpy as np
import matplotlib.pyplot as plt
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
   
plot = plt.plot(distribution, rv.pdf(distribution))

输出:

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

代码#4:改变位置参数

import matplotlib.pyplot as plt
import numpy as np
   
x = np.linspace(0, 5, 100)
   
# Varying positional arguments
y1 = hypsecant .pdf(x, 1, 3)
y2 = hypsecant .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

输出: