给定大小为N且Q为[L,R]的查询的数组arr ,任务是查找给定范围内此数组乘积的除数。
先决条件: MO算法,模块化乘法逆,使用筛子的素数分解
例子:
Input: arr[] = {4, 1, 9, 12, 5, 3}, Q = {{1, 3}, {3, 5}}
Output:
9
24
Input: arr[] = {5, 2, 3, 1, 4}, Q = {{2, 4}, {1, 5}}
Output:
4
16
方法:
MO的算法的思想是对所有查询进行预处理,以便一个查询的结果可以在下一个查询中使用。
令a [0…n-1]为输入数组, q [0..m-1]为查询数组。
- 对所有查询进行排序,将L值从0到√n– 1的查询放在一起,然后将所有从√n到2×√n– 1的查询放在一起,依此类推。块中的所有查询均按R值的升序排序。
- 以每个查询都使用上一个查询中计算出的结果的方式,一个接一个地处理所有查询。令“结果”为先前查询的结果
- 数字n可以表示为n = ,其中a i是素因子,而p i是它们的整数幂。
因此,对于该分解,我们有公式可以找到n的除数的总数,即: - 在添加函数,我们将计数器数组递增,即counter [a [i]] = counter [a [i]] + p i 。让“ prev”存储counter [a [i]]的先前值。现在,随着计数器数组的更改,结果更改为:
- result = result / (prev + 1) (Dividing by prev+1 neutralizes the effect of previous pi)
- result = (result × (counter[pi] + 1) (Now the previous result is neutralized so we multiply with the new count i.e counter[a[i]]+1)
- 在删除函数,我们将计数器数组递减为counter [a [i]] = counter [a [i]] – p i 。现在,随着计数器数组的更改,结果更改为:
- result = result / (prev + 1) (Dividing by prev+1 neutralizes the effect of previous pi)
- result = (result × (counter[pi] + 1) (Now the previous result is neutralized so we
multiply with the new count i.e counter[a[i]]+1)
下面是上述方法的实现
// C++ program to Count the divisors
// of product of an Array in range
// L to R for Q queries
#include
using namespace std;
#define MAX 1000000
#define MOD 1000000007
#define ll long long int
// Variable to represent block size.
// This is made global so compare()
// of sort can use it.
int block;
// Structure to represent a query range
struct Query {
int L, R;
};
// Store the prime factor of numbers
// till MAX
vector > store[MAX + 1];
// Initialized to store the count
// of prime fators
int counter[MAX + 1] = {};
// Result is Initialized to 1
int result = 1;
// Inverse array to store
// inverse of number from 1 to MAX
ll inverse[MAX + 1];
// Function used to sort all queries so that
// all queries of the same block are arranged
// together and within a block, queries are
// sorted in increasing order of R values.
bool compare(Query x, Query y)
{
// Different blocks, sort by block.
if (x.L / block != y.L / block)
return x.L / block < y.L / block;
// Same block, sort by R value
return x.R < y.R;
}
// Function to calculate modular
// inverse and storing it in Inverse array
void modularInverse()
{
inverse[0] = inverse[1] = 1;
for (int i = 2; i <= MAX; i++)
inverse[i] = inverse[MOD % i]
* (MOD - MOD / i)
% MOD;
}
// Function to use Sieve to compute
// and store prime numbers
void sieve()
{
store[1].push_back({ 1, 0 });
for (int i = 2; i <= MAX; i++)
{
if (store[i].size() == 0)
{
store[i].push_back({ i, 1 });
for (int j = 2 * i; j <= MAX; j += i)
{
int cnt = 0;
int x = j;
while (x % i == 0)
cnt++, x /= i;
store[j].push_back({ i, cnt });
}
}
}
}
// Function to Add elements
// of current range
void add(int currL, int a[])
{
int value = a[currL];
for (auto it = store[value].begin();
it != store[value].end(); it++) {
// it->first is ai
// it->second is its integral power
int prev = counter[it->first];
counter[it->first] += it->second;
result = (result * inverse[prev + 1])
% MOD;
result = (result *
(counter[it->first] + 1))
% MOD;
}
}
// Function to remove elements
// of previous range
void remove(int currR, int a[])
{
int value = a[currR];
for (auto it = store[value].begin();
it != store[value].end(); it++) {
// it->first is ai
// it->second is its integral power
int prev = counter[it->first];
counter[it->first] -= it->second;
result = (result * inverse[prev + 1])
% MOD;
result = (result *
(counter[it->first] + 1))
% MOD;
}
}
// Function to print the answer.
void queryResults(int a[], int n, Query q[],
int m)
{
// Find block size
block = (int)sqrt(n);
// Sort all queries so that queries of
// same blocks are arranged together.
sort(q, q + m, compare);
// Initialize current L, current R and
// current result
int currL = 0, currR = 0;
for (int i = 0; i < m; i++) {
// L and R values of current range
int L = q[i].L, R = q[i].R;
// Add Elements of current range
while (currR <= R) {
add(currR, a);
currR++;
}
while (currL > L) {
add(currL - 1, a);
currL--;
}
// Remove element of previous range
while (currR > R + 1)
{
remove(currR - 1, a);
currR--;
}
while (currL < L) {
remove(currL, a);
currL++;
}
cout << result << endl;
}
}
// Driver Code
int main()
{
// Precomputing the prime numbers
// using sieve
sieve();
// Precomputing modular inverse of
// numbers from 1 to MAX
modularInverse();
int a[] = { 5, 2, 3, 1, 4 };
int n = sizeof(a) / sizeof(a[0]);
Query q[] = { { 1, 3 }, { 0, 4 } };
int m = sizeof(q) / sizeof(q[0]);
// Answer the queries
queryResults(a, n, q, m);
return 0;
}
输出:
4
16
时间复杂度: O(Q×sqrt(N))