给定A和B,任务是找到X可以采用的可能值的数量,以使给定的模块化方程(A mod X)= B成立。在此,X也称为模块化方程式的解。
例子:
Input : A = 26, B = 2
Output : 6
Explanation
X can be equal to any of {3, 4, 6, 8,
12, 24} as A modulus any of these values
equals 2 i. e., (26 mod 3) = (26 mod 4)
= (26 mod 6) = (26 mod 8) = .... = 2
Input : 21 5
Output : 2
Explanation
X can be equal to any of {8, 16} as A modulus
any of these values equals 5 i.e. (21 mod
8) = (21 mod 16) = 5
如果我们仔细分析方程式A mod X = B,则很容易注意到,如果(A = B),那么X可以取无穷多个比A大的值。在(A B)时间,因此现在我们深入研究此案例。
现在,在这种情况下,我们可以使用一个众所周知的关系,即
Dividend = Divisor * Quotient + Remainder
我们正在寻找所有可能的X即除数,给定A即股息,而B即余数。所以,
We can say,
A = X * Quotient + B
Let Quotient be represented as Y
∴ A = X * Y + B
A - B = X * Y
∴ To get integral values of Y,
we need to take all X such that X divides (A - B)
∴ X is a divisor of (A - B)
因此,问题减少到找到(A – B)的除数,并且这样的除数的数量就是X可以取的可能值。
但是,我们知道A mod X会产生从(0到X – 1)的值,我们必须取所有这样的X使得X>B。
因此,我们可以得出结论:(A – B)的除数大于B是X满足A mod X = B所需的所有可能值。
/* C++ Program to find number of possible
values of X to satisfy A mod X = B */
#include
using namespace std;
/* Returns the number of divisors of (A - B)
greater than B */
int calculateDivisors(int A, int B)
{
int N = (A - B);
int noOfDivisors = 0;
for (int i = 1; i <= sqrt(N); i++) {
// if N is divisible by i
if ((N % i) == 0) {
// count only the divisors greater than B
if (i > B)
noOfDivisors++;
// checking if a divisor isnt counted twice
if ((N / i) != i && (N / i) > B)
noOfDivisors++;
}
}
return noOfDivisors;
}
/* Utility function to calculate number of all
possible values of X for which the modular
equation holds true */
int numberOfPossibleWaysUtil(int A, int B)
{
/* if A = B there are infinitely many solutions
to equation or we say X can take infinitely
many values > A. We return -1 in this case */
if (A == B)
return -1;
/* if A < B, there are no possible values of
X satisfying the equation */
if (A < B)
return 0;
/* the last case is when A > B, here we calculate
the number of divisors of (A - B), which are
greater than B */
int noOfDivisors = 0;
noOfDivisors = calculateDivisors(A, B);
return noOfDivisors;
}
/* Wrapper function for numberOfPossibleWaysUtil() */
void numberOfPossibleWays(int A, int B)
{
int noOfSolutions = numberOfPossibleWaysUtil(A, B);
// if infinitely many solutions available
if (noOfSolutions == -1) {
cout << "For A = " << A << " and B = " << B
<< ", X can take Infinitely many values"
" greater than "
<< A << "\n";
}
else {
cout << "For A = " << A << " and B = " << B
<< ", X can take " << noOfSolutions
<< " values\n";
}
}
// Driver code
int main()
{
int A = 26, B = 2;
numberOfPossibleWays(A, B);
A = 21, B = 5;
numberOfPossibleWays(A, B);
return 0;
}
输出:
For A = 26 and B = 2, X can take 6 values
For A = 21 and B = 5, X can take 2 values
上述方法的时间复杂度不过是找到(A – B)除数的时间复杂度,即O(√(A – B))
有关更多详细信息,请参阅关于模块化方程的解数的完整文章!
想要从精选的最佳视频中学习和练习问题,请查看《基础知识到高级C的C基础课程》。