📌  相关文章
📜  两个给定数组中可能最接近 K 的子集的总和

📅  最后修改于: 2021-09-06 05:43:41             🧑  作者: Mango

给定两个阵列A []B []分别选自NM的整数,和整数K,该任务是通过选择从所述数组A恰好一个要素[],并从一个元件到查找最近K个可能的总和数组B[]最多两次

例子:

方法:给定的问题可以通过使用递归来解决,通过为每个数组元素A[i] 找到总和最接近(K – A[i])的数组B[]的子集元素的总和。请按照以下步骤解决问题:

  • 初始化两个变量,比如mini作为INT_MAXans作为INT_MAX来存储最小绝对差和最接近K的值。
  • 定义一个递归函数,比如findClosest(arr, i, currSum)以找到最接近K的数组的子集总和,其中i是数组B[] 中的索引, currSum存储子集的总和。
    • 如果i的值至少为 M ,则从函数返回。
    • 如果(currSum – K)的绝对值小于迷你,然后更新为ABS(currSum – K)的值,并更新ANS作为currSum的值。
    • 如果(currSum – K)的绝对值等于mini ,则将ans的值更新为anscurrSum的最小值。
    • 将不包括元素B[i]的递归函数调用为findClosest(i + 1, currSum)
    • 将包含元素B[i]的递归函数调用一次为findClosest(i + 1, currSum + B[i])
    • 调用包含元素B[i]的递归函数两次findClosest(i + 1, currSum + 2*B[i])
  • 遍历给定的数组A[]并对每个元素调用函数findClosest(0, A[i])
  • 完成上述步骤后,打印ans的值作为结果和。

下面是上述方法的实现:

C++
// C++ program of the above approach
 
#include 
using namespace std;
 
// Stores the sum closest to K
int ans = INT_MAX;
 
// Stores the minimum absolute difference
int mini = INT_MAX;
 
// Function to choose the elements
// from the array B[]
void findClosestTarget(int i, int curr,
                       int B[], int M,
                       int K)
{
 
    // If absolute difference is less
    // then minimum value
    if (abs(curr - K) < mini) {
 
        // Update the minimum value
        mini = abs(curr - K);
 
        // Update the value of ans
        ans = curr;
    }
 
    // If absolute difference between
    // curr and K is equal to minimum
    if (abs(curr - K) == mini) {
 
        // Update the value of ans
        ans = min(ans, curr);
    }
 
    // If i is greater than M - 1
    if (i >= M)
        return;
 
    // Includes the element B[i] once
    findClosestTarget(i + 1, curr + B[i],
                      B, M, K);
 
    // Includes the element B[i] twice
    findClosestTarget(i + 1, curr + 2 * B[i],
                      B, M, K);
 
    // Excludes the element B[i]
    findClosestTarget(i + 1, curr, B, M, K);
}
 
// Function to find a subset sum
// whose sum is closest to K
int findClosest(int A[], int B[],
                int N, int M, int K)
{
    // Traverse the array A[]
    for (int i = 0; i < N; i++) {
 
        // Function Call
        findClosestTarget(0, A[i], B,
                          M, K);
    }
 
    // Return the ans
    return ans;
}
 
// Driver Code
int main()
{
    // Input
    int A[] = { 2, 3 };
    int B[] = { 4, 5, 30 };
    int N = sizeof(A) / sizeof(A[0]);
    int M = sizeof(B) / sizeof(B[0]);
    int K = 18;
 
    // Function Call
    cout << findClosest(A, B, N, M, K);
 
    return 0;
}


Java
// java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Stores the sum closest to K
    static int ans = Integer.MAX_VALUE;
 
    // Stores the minimum absolute difference
    static int mini = Integer.MAX_VALUE;
 
    // Function to choose the elements
    // from the array B[]
    static void findClosestTarget(int i, int curr, int B[],
                                  int M, int K)
    {
 
        // If absolute difference is less
        // then minimum value
        if (Math.abs(curr - K) < mini) {
 
            // Update the minimum value
            mini = Math.abs(curr - K);
 
            // Update the value of ans
            ans = curr;
        }
 
        // If absolute difference between
        // curr and K is equal to minimum
        if (Math.abs(curr - K) == mini) {
 
            // Update the value of ans
            ans = Math.min(ans, curr);
        }
 
        // If i is greater than M - 1
        if (i >= M)
            return;
 
        // Includes the element B[i] once
        findClosestTarget(i + 1, curr + B[i], B, M, K);
 
        // Includes the element B[i] twice
        findClosestTarget(i + 1, curr + 2 * B[i], B, M, K);
 
        // Excludes the element B[i]
        findClosestTarget(i + 1, curr, B, M, K);
    }
 
    // Function to find a subset sum
    // whose sum is closest to K
    static int findClosest(int A[], int B[], int N, int M,
                           int K)
    {
        // Traverse the array A[]
        for (int i = 0; i < N; i++) {
 
            // Function Call
            findClosestTarget(0, A[i], B, M, K);
        }
 
        // Return the ans
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Input
        int A[] = { 2, 3 };
        int B[] = { 4, 5, 30 };
        int N = A.length;
        int M = B.length;
        int K = 18;
 
        // Function Call
        System.out.print(findClosest(A, B, N, M, K));
    }
}
 
// This code is contributed by Kingash.


Python3
# Python3 program of the above approach
 
# Stores the sum closest to K
ans = 10**8
 
# Stores the minimum absolute difference
mini = 10**8
 
# Function to choose the elements
# from the array B[]
def findClosestTarget(i, curr, B, M, K):
    global ans, mini
     
    # If absolute difference is less
    # then minimum value
    if (abs(curr - K) < mini):
 
        # Update the minimum value
        mini = abs(curr - K)
 
        # Update the value of ans
        ans = curr
 
    # If absolute difference between
    # curr and K is equal to minimum
    if (abs(curr - K) == mini):
       
        # Update the value of ans
        ans = min(ans, curr)
 
    # If i is greater than M - 1
    if (i >= M):
        return
 
    # Includes the element B[i] once
    findClosestTarget(i + 1, curr + B[i], B, M, K)
 
    # Includes the element B[i] twice
    findClosestTarget(i + 1, curr + 2 * B[i], B, M, K)
 
    # Excludes the element B[i]
    findClosestTarget(i + 1, curr, B, M, K)
 
# Function to find a subset sum
# whose sum is closest to K
def findClosest(A, B, N, M, K):
   
    # Traverse the array A[]
    for i in range(N):
       
        # Function Call
        findClosestTarget(0, A[i], B, M, K)
 
    # Return the ans
    return ans
 
# Driver Code
if __name__ == '__main__':
   
    # Input
    A = [2, 3]
    B = [4, 5, 30]
    N = len(A)
    M = len(B)
    K = 18
 
    # Function Call
    print (findClosest(A, B, N, M, K))
 
# This code is contributed by mohit kumar 29.


C#
// C# program of the above approach
using System;
class GFG
{
   
    // Stores the sum closest to K
    static int ans = Int32.MaxValue;
 
    // Stores the minimum absolute difference
    static int mini = Int32.MaxValue;
 
    // Function to choose the elements
    // from the array B[]
    static void findClosestTarget(int i, int curr, int[] B,
                                  int M, int K)
    {
 
        // If absolute difference is less
        // then minimum value
        if (Math.Abs(curr - K) < mini) {
 
            // Update the minimum value
            mini = Math.Abs(curr - K);
 
            // Update the value of ans
            ans = curr;
        }
 
        // If absolute difference between
        // curr and K is equal to minimum
        if (Math.Abs(curr - K) == mini) {
 
            // Update the value of ans
            ans = Math.Min(ans, curr);
        }
 
        // If i is greater than M - 1
        if (i >= M)
            return;
 
        // Includes the element B[i] once
        findClosestTarget(i + 1, curr + B[i], B, M, K);
 
        // Includes the element B[i] twice
        findClosestTarget(i + 1, curr + 2 * B[i], B, M, K);
 
        // Excludes the element B[i]
        findClosestTarget(i + 1, curr, B, M, K);
    }
 
    // Function to find a subset sum
    // whose sum is closest to K
    static int findClosest(int[] A, int[] B, int N, int M,
                           int K)
    {
       
        // Traverse the array A[]
        for (int i = 0; i < N; i++) {
 
            // Function Call
            findClosestTarget(0, A[i], B, M, K);
        }
 
        // Return the ans
        return ans;
    }
 
    // Driver Code
    public static void Main()
    {
        // Input
        int[] A = { 2, 3 };
        int[] B = { 4, 5, 30 };
        int N = A.Length;
        int M = B.Length;
        int K = 18;
 
        // Function Call
        Console.WriteLine(findClosest(A, B, N, M, K));
    }
}
 
// This code is contributed by ukasp.


Javascript


输出:
17

时间复杂度: O(N * 3 M )
辅助空间: O(1)

如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live