给定一个有向图和其中的两个顶点 ‘u’ 和 ‘v’,计算从 ‘u’ 到 ‘v’ 的所有可能的步行,在步行上恰好有 k 条边。
该图被赋予邻接矩阵表示,其中 graph[i][j] 的值为 1 表示从顶点 i 到顶点 j 存在边,值为 0 表示从 i 到 j 没有边。
例如,考虑下图。让源’u’为顶点0,目的地’v’为3,k为2。输出应该是2,因为从0到3有两次步行,正好有2条边。行走是 {0, 2, 3} 和 {0, 1, 3}
简单方法:创建一个递归函数,该函数采用当前顶点、目标顶点和顶点计数。以k的值为k-1的当前顶点的所有相邻顶点调用递归函数。当 k 的值为 0 时,则检查当前顶点是否为目的地。如果是目的地,则输出答案为 1。
下面是这个简单解决方案的实现。
C++
// C++ program to count walks from u to
// v with exactly k edges
#include
using namespace std;
// Number of vertices in the graph
#define V 4
// A naive recursive function to count
// walks from u to v with k edges
int countwalks(int graph[][V], int u, int v, int k)
{
// Base cases
if (k == 0 && u == v)
return 1;
if (k == 1 && graph[u][v])
return 1;
if (k <= 0)
return 0;
// Initialize result
int count = 0;
// Go to all adjacents of u and recur
for (int i = 0; i < V; i++)
if (graph[u][i] == 1) // Check if is adjacent of u
count += countwalks(graph, i, v, k - 1);
return count;
}
// driver program to test above function
int main()
{
/* Let us create the graph shown in above diagram*/
int graph[V][V] = { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
cout << countwalks(graph, u, v, k);
return 0;
}
Java
// Java program to count walks from u to v with exactly k edges
import java.util.*;
import java.lang.*;
import java.io.*;
class KPaths {
static final int V = 4; // Number of vertices
// A naive recursive function to count walks from u
// to v with k edges
int countwalks(int graph[][], int u, int v, int k)
{
// Base cases
if (k == 0 && u == v)
return 1;
if (k == 1 && graph[u][v] == 1)
return 1;
if (k <= 0)
return 0;
// Initialize result
int count = 0;
// Go to all adjacents of u and recur
for (int i = 0; i < V; i++)
if (graph[u][i] == 1) // Check if is adjacent of u
count += countwalks(graph, i, v, k - 1);
return count;
}
// Driver method
public static void main(String[] args) throws java.lang.Exception
{
/* Let us create the graph shown in above diagram*/
int graph[][] = new int[][] { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
KPaths p = new KPaths();
System.out.println(p.countwalks(graph, u, v, k));
}
} // Contributed by Aakash Hasija
Python3
# Python3 program to count walks from
# u to v with exactly k edges
# Number of vertices in the graph
V = 4
# A naive recursive function to count
# walks from u to v with k edges
def countwalks(graph, u, v, k):
# Base cases
if (k == 0 and u == v):
return 1
if (k == 1 and graph[u][v]):
return 1
if (k <= 0):
return 0
# Initialize result
count = 0
# Go to all adjacents of u and recur
for i in range(0, V):
# Check if is adjacent of u
if (graph[u][i] == 1):
count += countwalks(graph, i, v, k-1)
return count
# Driver Code
# Let us create the graph shown in above diagram
graph = [[0, 1, 1, 1, ],
[0, 0, 0, 1, ],
[0, 0, 0, 1, ],
[0, 0, 0, 0] ]
u = 0; v = 3; k = 2
print(countwalks(graph, u, v, k))
# This code is contributed by Smitha Dinesh Semwal.
C#
// C# program to count walks from u to
// v with exactly k edges
using System;
class GFG {
// Number of vertices
static int V = 4;
// A naive recursive function to
// count walks from u to v with
// k edges
static int countwalks(int[, ] graph, int u,
int v, int k)
{
// Base cases
if (k == 0 && u == v)
return 1;
if (k == 1 && graph[u, v] == 1)
return 1;
if (k <= 0)
return 0;
// Initialize result
int count = 0;
// Go to all adjacents of u and recur
for (int i = 0; i < V; i++)
// Check if is adjacent of u
if (graph[u, i] == 1)
count += countwalks(graph, i, v, k - 1);
return count;
}
// Driver method
public static void Main()
{
/* Let us create the graph shown
in above diagram*/
int[, ] graph = new int[, ] { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
Console.Write(
countwalks(graph, u, v, k));
}
}
// This code is contributed by nitin mittal.
PHP
Javascript
C++
// C++ program to count walks from
// u to v with exactly k edges
#include
using namespace std;
// Number of vertices in the graph
#define V 4
// A Dynamic programming based function to count walks from u
// to v with k edges
int countwalks(int graph[][V], int u, int v, int k)
{
// Table to be filled up using DP.
// The value count[i][j][e] will
// store count of possible walks from
// i to j with exactly k edges
int count[V][V][k + 1];
// Loop for number of edges from 0 to k
for (int e = 0; e <= k; e++) {
for (int i = 0; i < V; i++) // for source
{
for (int j = 0; j < V; j++) // for destination
{
// initialize value
count[i][j][e] = 0;
// from base cases
if (e == 0 && i == j)
count[i][j][e] = 1;
if (e == 1 && graph[i][j])
count[i][j][e] = 1;
// go to adjacent only when the
// number of edges is more than 1
if (e > 1) {
for (int a = 0; a < V; a++) // adjacent of source i
if (graph[i][a])
count[i][j][e] += count[a][j][e - 1];
}
}
}
}
return count[u][v][k];
}
// driver program to test above function
int main()
{
/* Let us create the graph shown in above diagram*/
int graph[V][V] = { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
cout << countwalks(graph, u, v, k);
return 0;
}
Java
// Java program to count walks from
// u to v with exactly k edges
import java.util.*;
import java.lang.*;
import java.io.*;
class KPaths {
static final int V = 4; // Number of vertices
// A Dynamic programming based function to count walks from u
// to v with k edges
int countwalks(int graph[][], int u, int v, int k)
{
// Table to be filled up using DP. The value count[i][j][e]
// will/ store count of possible walks from i to j with
// exactly k edges
int count[][][] = new int[V][V][k + 1];
// Loop for number of edges from 0 to k
for (int e = 0; e <= k; e++) {
for (int i = 0; i < V; i++) // for source
{
for (int j = 0; j < V; j++) // for destination
{
// initialize value
count[i][j][e] = 0;
// from base cases
if (e == 0 && i == j)
count[i][j][e] = 1;
if (e == 1 && graph[i][j] != 0)
count[i][j][e] = 1;
// go to adjacent only when number of edges
// is more than 1
if (e > 1) {
for (int a = 0; a < V; a++) // adjacent of i
if (graph[i][a] != 0)
count[i][j][e] += count[a][j][e - 1];
}
}
}
}
return count[u][v][k];
}
// Driver method
public static void main(String[] args) throws java.lang.Exception
{
/* Let us create the graph shown in above diagram*/
int graph[][] = new int[][] { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
KPaths p = new KPaths();
System.out.println(p.countwalks(graph, u, v, k));
}
} // Contributed by Aakash Hasija
Python3
# Python3 program to count walks from
# u to v with exactly k edges
# Number of vertices
V = 4
# A Dynamic programming based function
# to count walks from u to v with k edges
def countwalks(graph, u, v, k):
# Table to be filled up using DP.
# The value count[i][j][e] will/
# store count of possible walks
# from i to j with exactly k edges
count = [[[0 for k in range(k + 1)]
for i in range(V)]
for j in range(V)]
# Loop for number of edges from 0 to k
for e in range(0, k + 1):
# For Source
for i in range(V):
# For Desitination
for j in range(V):
# Initialize value
# count[i][j][e] = 0
# From base cases
if (e == 0 and i == j):
count[i][j][e] = 1
if (e == 1 and graph[i][j] != 0):
count[i][j][e] = 1
# Go to adjacent only when number
# of edges is more than 1
if (e > 1):
for a in range(V):
# Adjacent of i
if (graph[i][a] != 0):
count[i][j][e] += count[a][j][e - 1]
return count[u][v][k]
# Driver code
if __name__ == '__main__':
# Let us create the graph shown
# in above diagram
graph = [[0, 1, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]]
u = 0
v = 3
k = 2
print(countwalks(graph, u, v, k))
# This code is contributed by Rajput-Ji
C#
// C# program to count walks from u to v
// with exactly k edges
using System;
class GFG {
static int V = 4; // Number of vertices
// A Dynamic programming based function
// to count walks from u to v with k edges
static int countwalks(int[, ] graph, int u,
int v, int k)
{
// Table to be filled up using DP. The
// value count[i][j][e] will/ store
// count of possible walks from i to
// j with exactly k edges
int[,, ] count = new int[V, V, k + 1];
// Loop for number of edges from 0 to k
for (int e = 0; e <= k; e++) {
// for source
for (int i = 0; i < V; i++) {
// for destination
for (int j = 0; j < V; j++) {
// initialize value
count[i, j, e] = 0;
// from base cases
if (e == 0 && i == j)
count[i, j, e] = 1;
if (e == 1 && graph[i, j] != 0)
count[i, j, e] = 1;
// go to adjacent only when
// number of edges
// is more than 1
if (e > 1) {
// adjacent of i
for (int a = 0; a < V; a++)
if (graph[i, a] != 0)
count[i, j, e] += count[a, j, e - 1];
}
}
}
}
return count[u, v, k];
}
// Driver method
public static void Main()
{
/* Let us create the graph shown in
above diagram*/
int[, ] graph = { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
Console.WriteLine(
countwalks(graph, u, v, k));
}
}
// This is Code Contributed by anuj_67.
Javascript
输出:
2
复杂度分析:
- 时间复杂度: O(V k )。
上述函数的最坏情况时间复杂度为 O(V k ),其中 V 是给定图中的顶点数。我们可以通过绘制递归树来简单地分析时间复杂度。最坏的情况发生在完整的图上。在最坏的情况下,递归树的每个内部节点都恰好有 n 个子节点。 - 辅助空间: O(V)。
存储堆栈空间和访问数组需要 O(V) 空间。
有效的方法:可以使用动态规划来优化解决方案。这个想法是建立一个 3D 表,其中第一维是源,第二维是目的地,第三维是从源到目的地的边数,值是走的次数。与其他动态规划问题一样,以自下而上的方式填充 3D 表。
C++
// C++ program to count walks from
// u to v with exactly k edges
#include
using namespace std;
// Number of vertices in the graph
#define V 4
// A Dynamic programming based function to count walks from u
// to v with k edges
int countwalks(int graph[][V], int u, int v, int k)
{
// Table to be filled up using DP.
// The value count[i][j][e] will
// store count of possible walks from
// i to j with exactly k edges
int count[V][V][k + 1];
// Loop for number of edges from 0 to k
for (int e = 0; e <= k; e++) {
for (int i = 0; i < V; i++) // for source
{
for (int j = 0; j < V; j++) // for destination
{
// initialize value
count[i][j][e] = 0;
// from base cases
if (e == 0 && i == j)
count[i][j][e] = 1;
if (e == 1 && graph[i][j])
count[i][j][e] = 1;
// go to adjacent only when the
// number of edges is more than 1
if (e > 1) {
for (int a = 0; a < V; a++) // adjacent of source i
if (graph[i][a])
count[i][j][e] += count[a][j][e - 1];
}
}
}
}
return count[u][v][k];
}
// driver program to test above function
int main()
{
/* Let us create the graph shown in above diagram*/
int graph[V][V] = { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
cout << countwalks(graph, u, v, k);
return 0;
}
Java
// Java program to count walks from
// u to v with exactly k edges
import java.util.*;
import java.lang.*;
import java.io.*;
class KPaths {
static final int V = 4; // Number of vertices
// A Dynamic programming based function to count walks from u
// to v with k edges
int countwalks(int graph[][], int u, int v, int k)
{
// Table to be filled up using DP. The value count[i][j][e]
// will/ store count of possible walks from i to j with
// exactly k edges
int count[][][] = new int[V][V][k + 1];
// Loop for number of edges from 0 to k
for (int e = 0; e <= k; e++) {
for (int i = 0; i < V; i++) // for source
{
for (int j = 0; j < V; j++) // for destination
{
// initialize value
count[i][j][e] = 0;
// from base cases
if (e == 0 && i == j)
count[i][j][e] = 1;
if (e == 1 && graph[i][j] != 0)
count[i][j][e] = 1;
// go to adjacent only when number of edges
// is more than 1
if (e > 1) {
for (int a = 0; a < V; a++) // adjacent of i
if (graph[i][a] != 0)
count[i][j][e] += count[a][j][e - 1];
}
}
}
}
return count[u][v][k];
}
// Driver method
public static void main(String[] args) throws java.lang.Exception
{
/* Let us create the graph shown in above diagram*/
int graph[][] = new int[][] { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
KPaths p = new KPaths();
System.out.println(p.countwalks(graph, u, v, k));
}
} // Contributed by Aakash Hasija
蟒蛇3
# Python3 program to count walks from
# u to v with exactly k edges
# Number of vertices
V = 4
# A Dynamic programming based function
# to count walks from u to v with k edges
def countwalks(graph, u, v, k):
# Table to be filled up using DP.
# The value count[i][j][e] will/
# store count of possible walks
# from i to j with exactly k edges
count = [[[0 for k in range(k + 1)]
for i in range(V)]
for j in range(V)]
# Loop for number of edges from 0 to k
for e in range(0, k + 1):
# For Source
for i in range(V):
# For Desitination
for j in range(V):
# Initialize value
# count[i][j][e] = 0
# From base cases
if (e == 0 and i == j):
count[i][j][e] = 1
if (e == 1 and graph[i][j] != 0):
count[i][j][e] = 1
# Go to adjacent only when number
# of edges is more than 1
if (e > 1):
for a in range(V):
# Adjacent of i
if (graph[i][a] != 0):
count[i][j][e] += count[a][j][e - 1]
return count[u][v][k]
# Driver code
if __name__ == '__main__':
# Let us create the graph shown
# in above diagram
graph = [[0, 1, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 0]]
u = 0
v = 3
k = 2
print(countwalks(graph, u, v, k))
# This code is contributed by Rajput-Ji
C#
// C# program to count walks from u to v
// with exactly k edges
using System;
class GFG {
static int V = 4; // Number of vertices
// A Dynamic programming based function
// to count walks from u to v with k edges
static int countwalks(int[, ] graph, int u,
int v, int k)
{
// Table to be filled up using DP. The
// value count[i][j][e] will/ store
// count of possible walks from i to
// j with exactly k edges
int[,, ] count = new int[V, V, k + 1];
// Loop for number of edges from 0 to k
for (int e = 0; e <= k; e++) {
// for source
for (int i = 0; i < V; i++) {
// for destination
for (int j = 0; j < V; j++) {
// initialize value
count[i, j, e] = 0;
// from base cases
if (e == 0 && i == j)
count[i, j, e] = 1;
if (e == 1 && graph[i, j] != 0)
count[i, j, e] = 1;
// go to adjacent only when
// number of edges
// is more than 1
if (e > 1) {
// adjacent of i
for (int a = 0; a < V; a++)
if (graph[i, a] != 0)
count[i, j, e] += count[a, j, e - 1];
}
}
}
}
return count[u, v, k];
}
// Driver method
public static void Main()
{
/* Let us create the graph shown in
above diagram*/
int[, ] graph = { { 0, 1, 1, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 1 },
{ 0, 0, 0, 0 } };
int u = 0, v = 3, k = 2;
Console.WriteLine(
countwalks(graph, u, v, k));
}
}
// This is Code Contributed by anuj_67.
Javascript
输出:
2
复杂度分析:
- 时间复杂度: O(V 3 )。
填充DP表需要三个嵌套循环,所以时间复杂度为O(V 3/sup>)。 - 辅助空间: O(V 3 )。
存储DP表需要O(V 3 )空间。
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。