📅  最后修改于: 2023-12-03 15:36:19.382000             🧑  作者: Mango
本文将介绍如何使用程序来计算从源到目的地的步行次数。对于这一问题,我们需要先理解路线规划的基本原理以及如何获取地图数据。本文将重点介绍使用开源地图API的路线规划方法,以及如何解析API返回的数据,最终计算出步行次数。
地图API(应用程序接口)允许我们获取地图相关的数据和功能。在本文中,我们将使用OpenStreetMap(OSM)提供的API,它是一个免费、开源的地图项目。我们可以通过访问OSM的API来获取地图数据,例如路线规划、地理编码、逆地理编码等。
路线规划是指找到从一个点到另一个点的最优路径的过程。在本文中,我们将使用OSRM(Open Source Routing Machine)作为路线规划引擎。OSRM是一个免费、开源的路线规划引擎,它可以将地图数据转换为路网数据,并计算出最优路径。
在使用OSM和OSRM之前,我们需要获取地图数据。可以通过访问OSM的API接口来获取所需的地图数据。在本文中,我们将使用Overpass API来获取地图数据。Overpass API是一个OSM数据查询语言,它允许我们查询特定区域的地图数据。以下是一个示例查询,它将返回柏林的地图数据:
[out:json];
area[name="Berlin"]->.a;
(
node(area.a)[amenity=restaurant];
way(area.a)[highway~"^(primary|secondary|tertiary)$"];
relation(area.a)[type=multipolygon][building];
);
out body;
>;out skel qt;
在获取地图数据后,我们可以使用OSRM计算出最优路径。OSRM返回的数据格式为JSON格式,我们需要解析JSON以获取路线信息。以下是一个示例JSON响应:
{
"code": "Ok",
"waypoints": [
{
"hint": "G-kGgLnF3wYDgAAAggAAAAAAAC4AAAAAAAAASYAfAOBcnDAOgAAAAAAAAAGgAAAAAAAAAAAAAAAAAAPAAAAA==",
"name": "",
"location": [
52.5136978,
13.3907922
]
},
{
"hint": "G-kGgLnF3wYAAAACAwAAAAAAAC0AAAAAAAAAXHtRAABIJ_EOcUAAAAAAAAAEAAAAAAAAAAAAAAAAAAQAAAAA=",
"name": "",
"location": [
52.5170336,
13.3888599
]
}
],
"routes": [
{
"distance": 389.7,
"duration": 58.3,
"geometry": "{uhhA|q}lkFkTcAmAoBgA~@sAtA",
"legs": [
{
"steps": [
{
"distance": 389.7,
"duration": 58.3,
"geometry": "{uhhA|q}lkFkTcAmAoBgA~@sAtA",
"name": "",
"mode": "walking",
"maneuver": {
"type": "depart",
"location": [
52.5136978,
13.3907922
],
"bearing_before": 0,
"bearing_after": 330,
"instruction": "",
"modifier": "straight"
}
}
]
}
]
}
],
"waypoint_distances": [
0,
0
],
"waypoint_names": [
"",
""
]
}
我们需要解析JSON,提取出路线信息。例如,我们可以使用以下代码片段来解析JSON,获取步行距离:
import json
response_json = """
{
"code": "Ok",
"waypoints": [
{
"hint": "G-kGgLnF3wYDgAAAggAAAAAAAC4AAAAAAAAASYAfAOBcnDAOgAAAAAAAAAGgAAAAAAAAAAAAAAAAAAPAAAAA==",
"name": "",
"location": [
52.5136978,
13.3907922
]
},
{
"hint": "G-kGgLnF3wYAAAACAwAAAAAAAC0AAAAAAAAAXHtRAABIJ_EOcUAAAAAAAAAEAAAAAAAAAAAAAAAAAAQAAAAA=",
"name": "",
"location": [
52.5170336,
13.3888599
]
}
],
"routes": [
{
"distance": 389.7,
"duration": 58.3,
"geometry": "{uhhA|q}lkFkTcAmAoBgA~@sAtA",
"legs": [
{
"steps": [
{
"distance": 389.7,
"duration": 58.3,
"geometry": "{uhhA|q}lkFkTcAmAoBgA~@sAtA",
"name": "",
"mode": "walking",
"maneuver": {
"type": "depart",
"location": [
52.5136978,
13.3907922
],
"bearing_before": 0,
"bearing_after": 330,
"instruction": "",
"modifier": "straight"
}
}
]
}
]
}
],
"waypoint_distances": [
0,
0
],
"waypoint_names": [
"",
""
]
}
"""
response_dict = json.loads(response_json)
distance = response_dict.get('routes', [{}])[0].get('distance', 0.0)
print(distance)
我们可以通过解析OSRM返回的路线信息,计算出从源到目的地的步行次数。步行次数可以定义为两个步行距离之间的时间比率。例如,假设步行速度为每小时5公里,步行1公里需要12分钟,则步行距离为1000米需要步行时间为12/60=0.2小时。因此,我们可以计算出每段路线的步行次数,然后将它们相加以获取总步行次数。以下是一个示例程序,用于计算从源到目的地的步行次数:
import requests
import json
def calculate_walking_times(start_lat, start_lon, end_lat, end_lon):
# Get route from OSRM
url = f"http://router.project-osrm.org/route/v1/walking/{start_lon},{start_lat};{end_lon},{end_lat}?overview=false"
response = requests.get(url)
response_dict = json.loads(response.content)
# Calculate walking times
walking_times = []
for route in response_dict.get('routes', []):
if 'legs' not in route:
continue
for leg in route['legs']:
if 'steps' not in leg:
continue
for step in leg['steps']:
if 'distance' not in step or 'duration' not in step:
continue
walking_distance = step['distance']
walking_duration = step['duration']
walking_speed = 5.0 # km/h
walking_time = walking_distance / (walking_speed * 1000) * 60.0 # minutes
walking_times.append(walking_time)
total_walking_time = sum(walking_times)
return total_walking_time
start_lat = 52.5142577
start_lon = 13.3425607
end_lat = 52.5201439
end_lon = 13.4043413
walking_time = calculate_walking_times(start_lat, start_lon, end_lat, end_lon)
print(f"Total walking time: {walking_time:.2f} minutes")
本文介绍了如何使用地图API和路线规划引擎计算从源到目的地的步行次数。我们使用OpenStreetMap提供的API获取地图数据,使用OSRM计算最优路径,并解析JSON响应以提取步行信息。最终,我们计算出所有步行距离的步行次数,并将它们相加以获取总步行次数。