📜  可以按尺寸递增的顺序从上到下放置的最大板数

📅  最后修改于: 2021-09-17 07:43:59             🧑  作者: Mango

给定一个大小为N的 2D 阵列Plates[][] ,每行代表N 个矩形板的长度和宽度,任务是找到可以相互放置的最大板数。
注意:只有当一个盘子的长度和宽度严格小于那个盘子时,它才能放在另一个盘子上。

例子:

方法:该问题是最长递增子序列问题的变体。唯一的区别是在 LIS 中,如果i < j ,则i元素将始终位于j元素之前。但在这里,板块的选择并不取决于指数。因此,要获得此指标限制,需要按面积降序对所有板块进行排序

递归方法:

每个板有两种可能的选择,即要么将其包含在序列中,要么将其丢弃。只有当其长度和宽度小于先前包含的板时,才能包含该板。

数组plates[][] = [ [6, 7], [3, 5], [7, 2] ]的递归树如下:

下面是递归方法的实现:

C++
// C++ Program for the above approach
 
#include 
using namespace std;
 
// Comparator function to sort plates
// in decreasing order of area
bool comp(vector v1,
          vector v2)
{
    return v1[0] * v1[1] > v2[0] * v2[1];
}
 
// Recursive function to count and return
// the max number of plates that can be placed
int countPlates(vector >& plates,
                int lastLength, int lastWidth,
                int i, int n)
{
    // If no plate remains
    if (i == n)
        return 0;
 
    int taken = 0, notTaken = 0;
 
    // If length and width of previous plate
    // exceeds that of the current plate
    if (lastLength > plates[i][0]
        && lastWidth > plates[i][1]) {
 
        // Calculate including the plate
        taken = 1 + countPlates(plates, plates[i][0],
                                plates[i][1], i + 1, n);
 
        // Calculate excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
    }
 
    // Otherwise
    else
 
        // Calculate only excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
 
    return max(taken, notTaken);
}
 
// Driver code
int main()
{
    vector > plates = { { 6, 4 }, { 5, 7 },
                        { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.size();
 
    // Sorting plates in decreasing order of area
    sort(plates.begin(), plates.end(), comp);
 
    // Assuming first plate to be of maximum size
    int lastLength = INT_MAX;
    int lastWidth = INT_MAX;
 
    cout << countPlates(plates, lastLength,
                        lastWidth, 0, n);
    return 0;
}


Java
// Java program for the above approach
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Recursive function to count and return
// the max number of plates that can be placed
static int countPlates(int[][] plates,
                       int lastLength,
                       int lastWidth,
                       int i, int n)
{
     
    // If no plate remains
    if (i == n)
        return 0;
 
    int taken = 0, notTaken = 0;
 
    // If length and width of previous plate
    // exceeds that of the current plate
    if (lastLength > plates[i][0] &&
        lastWidth > plates[i][1])
    {
         
        // Calculate including the plate
        taken = 1 + countPlates(plates, plates[i][0],
                                plates[i][1], i + 1, n);
 
        // Calculate excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
    }
 
    // Otherwise
    else
     
        // Calculate only excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
 
    return Math.max(taken, notTaken);
}
 
// Driver code
public static void main(String[] args)
{
    int[][] plates = { { 6, 4 }, { 5, 7 },
                       { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.length;
     
    // Sorting plates in decreasing order of area
    Arrays.sort(plates, (v1, v2)-> (v2[0] * v2[1]) -
                                   (v1[0] * v1[1]));
     
    // Assuming first plate to be of maximum size
    int lastLength = Integer.MAX_VALUE;
    int lastWidth = Integer.MAX_VALUE;
     
    System.out.println(countPlates(plates, lastLength,
                                   lastWidth, 0, n));
}
}
 
// This code is contributed by offbeat


Javascript


C++
// C++ Program for the above approach
 
#include 
using namespace std;
 
// Comparator function to sort plates
// in decreasing order of area
bool comp(vector v1, vector v2)
{
    return v1[0] * v1[1] > v2[0] * v2[1];
}
 
// Function to count and return the max
// number of plates that can be placed
int countPlates(vector >& plates, int n)
{
 
    // Stores the maximum
    // number of plates
    int maximum_plates = 1;
    vector dp(n, 1);
 
    for (int i = 1; i < n; i++) {
        int cur = dp[i];
 
        // For each i-th plate, traverse
        // all the previous plates
        for (int j = i - 1; j >= 0; j--) {
 
            // If i-th plate is smaller than j-th plate
            if (plates[i][0] < plates[j][0]
                && plates[i][1] < plates[j][1]) {
 
                // Include the j-th plate only if current
                // count exceeds the previously stored count
                if (cur + dp[j] > dp[i]) {
 
                    dp[i] = cur + dp[j];
 
                    // Update the maximum count
                    maximum_plates = max(maximum_plates, dp[i]);
                }
            }
        }
    }
    return maximum_plates;
}
 
// Driver code
int main()
{
    vector > plates = { { 6, 4 }, { 5, 7 },
                        { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.size();
 
    // Sorting plates in decreasing order of area
    sort(plates.begin(), plates.end(), comp);
 
    cout << countPlates(plates, n);
 
    return 0;
}


Javascript


输出:
4

时间复杂度: O(2 N )
辅助空间:O(N)

动态规划方法:上述方法可以使用动态规划进行优化,如下图所示。

下面是上述方法的实现:

C++

// C++ Program for the above approach
 
#include 
using namespace std;
 
// Comparator function to sort plates
// in decreasing order of area
bool comp(vector v1, vector v2)
{
    return v1[0] * v1[1] > v2[0] * v2[1];
}
 
// Function to count and return the max
// number of plates that can be placed
int countPlates(vector >& plates, int n)
{
 
    // Stores the maximum
    // number of plates
    int maximum_plates = 1;
    vector dp(n, 1);
 
    for (int i = 1; i < n; i++) {
        int cur = dp[i];
 
        // For each i-th plate, traverse
        // all the previous plates
        for (int j = i - 1; j >= 0; j--) {
 
            // If i-th plate is smaller than j-th plate
            if (plates[i][0] < plates[j][0]
                && plates[i][1] < plates[j][1]) {
 
                // Include the j-th plate only if current
                // count exceeds the previously stored count
                if (cur + dp[j] > dp[i]) {
 
                    dp[i] = cur + dp[j];
 
                    // Update the maximum count
                    maximum_plates = max(maximum_plates, dp[i]);
                }
            }
        }
    }
    return maximum_plates;
}
 
// Driver code
int main()
{
    vector > plates = { { 6, 4 }, { 5, 7 },
                        { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.size();
 
    // Sorting plates in decreasing order of area
    sort(plates.begin(), plates.end(), comp);
 
    cout << countPlates(plates, n);
 
    return 0;
}

Javascript


输出:
4

时间复杂度: O(N 2 )
辅助空间: O(N)

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程