📜  K 中心问题 |第 1 组(贪心近似算法)

📅  最后修改于: 2021-10-26 06:52:08             🧑  作者: Mango

给定 n 个城市和每对城市之间的距离,选择 k 个城市来放置仓库(或 ATM 或云服务器),使得城市到仓库(或 ATM 或云服务器)的最大距离最小。

例如考虑以下四个城市,0、1、2和3以及它们之间的距离,如何在这4个城市之间放置2台ATM,使一个城市到ATM的最大距离最小。

kcenters1

由于该问题是已知的 NP-Hard 问题,因此没有多项式时间解决方案可用于此问题。有一个多项式时间贪心近似算法,贪心算法提供了一个永远不会比最优解更糟的解。只有当城市之间的距离遵循三角不等式(两点之间的距离总是小于通过第三点的距离之和)时,贪婪解决方案才有效。

2-近似贪心算法:
1)任意选择第一个中心。
2) 使用以下标准选择剩余的 k-1 个中心。
让 c1, c2, c3, … ci 是已经选择的中心。选择
(i+1)’th 个中心,选择距离最远的城市
选定的中心,即具有以下值的点 p 为最大值
Min[dist(p, c1), dist(p, c2), dist(p, c3), ….距离(p,ci)]

贪心算法

示例(上图中的 k = 3)
a) 令第一个任意选取的顶点为 0。
b) 下一个顶点是 1,因为 1 是离 0 最远的顶点。
c) 剩下的城市是 2 和 3。计算它们与已经选择的中心(0 和 1)的距离。贪心算法基本上计算以下值。
从 2 到已经考虑的中心的所有距离的最小值
Min[dist(2, 0), dist(2, 1)] = Min[7, 8] = 7
从 3 到已经考虑的中心的所有距离的最小值
Min[dist(3, 0), dist(3, 1)] = Min[6, 5] = 5
计算完上述值后,选择城市2,因为2对应的值最大。

请注意,贪婪算法没有给出 k = 2 的最佳解决方案,因为这只是一个近似算法,其边界是最优值的两倍。

证明上述贪心算法是2近似的。
令 OPT 为最优解中城市与中心的最大距离。我们需要证明从 Greedy 算法得到的最大距离是 2*OPT。
证明可以用矛盾来完成。
a) 假设最远点到所有中心的距离 > 2·OPT。
b) 这意味着所有中心之间的距离也 > 2·OPT。
c) 我们有 k + 1 个点,每对之间的距离 > 2·OPT。
d) 每个点都有一个距离 <= OPT 的最优解的中心。
e) 最优解中存在一对中心X相同的点(鸽巢原理:k个最优中心,k+1个点)
f) 它们之间的距离最多为 2·OPT(三角不等式),这是一个矛盾。

C++
// C++ program for the above approach
#include 
using namespace std;
 
int maxindex(int* dist, int n)
{
    int mi = 0;
    for (int i = 0; i < n; i++) {
        if (dist[i] > dist[mi])
            mi = i;
    }
    return mi;
}
 
void selectKcities(int n, int weights[4][4], int k)
{
    int* dist = new int[n];
    vector centers;
    for (int i = 0; i < n; i++) {
        dist[i] = INT_MAX;
    }
 
    // index of city having the
    // maximum distance to it's
    // closest center
    int max = 0;
    for (int i = 0; i < k; i++) {
        centers.push_back(max);
        for (int j = 0; j < n; j++) {
 
            // updating the distance
            // of the cities to their
            // closest centers
            dist[j] = min(dist[j], weights[max][j]);
        }
 
        // updating the index of the
        // city with the maximum
        // distance to it's closest center
        max = maxindex(dist, n);
    }
 
    // Printing the maximum distance
    // of a city to a center
    // that is our answer
    cout << endl << dist[max] << endl;
 
    // Printing the cities that
    // were chosen to be made
    // centers
    for (int i = 0; i < centers.size(); i++) {
        cout << centers[i] << " ";
    }
    cout << endl;
}
 
// Driver Code
int main()
{
    int n = 4;
    int weights[4][4] = { { 0, 4, 8, 5 },
                          { 4, 0, 10, 7 },
                          { 8, 10, 0, 9 },
                          { 5, 7, 9, 0 } };
    int k = 2;
 
    // Function Call
    selectKcities(n, weights, k);
}
// Contributed by Balu Nagar


Java
// Java program for the above approach
import java.util.*;
 
class GFG{
 
static int maxindex(int[] dist, int n)
{
    int mi = 0;
    for(int i = 0; i < n; i++)
    {
        if (dist[i] > dist[mi])
            mi = i;
    }
    return mi;
}
 
static void selectKcities(int n, int weights[][],
                          int k)
{
    int[] dist = new int[n];
    ArrayList centers = new ArrayList<>();
    for(int i = 0; i < n; i++)
    {
        dist[i] = Integer.MAX_VALUE;
    }
 
    // Index of city having the
    // maximum distance to it's
    // closest center
    int max = 0;
    for(int i = 0; i < k; i++)
    {
        centers.add(max);
        for(int j = 0; j < n; j++)
        {
             
            // Updating the distance
            // of the cities to their
            // closest centers
            dist[j] = Math.min(dist[j],
                               weights[max][j]);
        }
 
        // Updating the index of the
        // city with the maximum
        // distance to it's closest center
        max = maxindex(dist, n);
    }
 
    // Printing the maximum distance
    // of a city to a center
    // that is our answer
    System.out.println(dist[max]);
 
    // Printing the cities that
    // were chosen to be made
    // centers
    for(int i = 0; i < centers.size(); i++)
    {
        System.out.print(centers.get(i) + " ");
    }
    System.out.print("\n");
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 4;
    int[][] weights = new int[][]{ { 0, 4, 8, 5 },
                                   { 4, 0, 10, 7 },
                                   { 8, 10, 0, 9 },
                                   { 5, 7, 9, 0 } };
    int k = 2;
 
    // Function Call
    selectKcities(n, weights, k);
}
}
 
// This code is contributed by nspatilme


Python3
# Python3 program for the above approach
def maxindex(dist, n):
    mi = 0
    for i in range(n):
        if (dist[i] > dist[mi]):
            mi = i
    return mi
 
def selectKcities(n, weights, k):
    dist = [0]*n
    centers = []
 
    for i in range(n):
        dist[i] = 10**9
         
    # index of city having the
    # maximum distance to it's
    # closest center
    max = 0
    for i in range(k):
        centers.append(max)
        for j in range(n):
 
            # updating the distance
            # of the cities to their
            # closest centers
            dist[j] = min(dist[j], weights[max][j])
 
        # updating the index of the
        # city with the maximum
        # distance to it's closest center
        max = maxindex(dist, n)
 
    # Printing the maximum distance
    # of a city to a center
    # that is our answer
    # print()
    print(dist[max])
 
    # Printing the cities that
    # were chosen to be made
    # centers
    for i in centers:
        print(i, end = " ")
 
# Driver Code
if __name__ == '__main__':
    n = 4
    weights = [ [ 0, 4, 8, 5 ],
              [ 4, 0, 10, 7 ],
              [ 8, 10, 0, 9 ],
              [ 5, 7, 9, 0 ] ]
    k = 2
 
    # Function Call
    selectKcities(n, weights, k)
 
# This code is contributed by mohit kumar 29.


C#
using System;
using System.Collections.Generic;
 
public class GFG{
     
    static int maxindex(int[] dist, int n)
    {
        int mi = 0;
        for(int i = 0; i < n; i++)
        {
            if (dist[i] > dist[mi])
                mi = i;
        }
        return mi;
    }
      
    static void selectKcities(int n, int[,] weights,
                              int k)
    {
        int[] dist = new int[n];
        List centers = new List();
        for(int i = 0; i < n; i++)
        {
            dist[i] = Int32.MaxValue;
        }
      
        // Index of city having the
        // maximum distance to it's
        // closest center
        int max = 0;
        for(int i = 0; i < k; i++)
        {
            centers.Add(max);
            for(int j = 0; j < n; j++)
            {
                  
                // Updating the distance
                // of the cities to their
                // closest centers
                dist[j] = Math.Min(dist[j],
                                   weights[max,j]);
            }
      
            // Updating the index of the
            // city with the maximum
            // distance to it's closest center
            max = maxindex(dist, n);
        }
      
        // Printing the maximum distance
        // of a city to a center
        // that is our answer
        Console.WriteLine(dist[max]);
      
        // Printing the cities that
        // were chosen to be made
        // centers
        for(int i = 0; i < centers.Count; i++)
        {
            Console.Write(centers[i] + " ");
        }
        Console.Write("\n");
    }
      
    // Driver Code
    static public void Main (){
         
        int n = 4;
    int[,] weights = new int[,]{ { 0, 4, 8, 5 },
                                   { 4, 0, 10, 7 },
                                   { 8, 10, 0, 9 },
                                   { 5, 7, 9, 0 } };
    int k = 2;
  
    // Function Call
    selectKcities(n, weights, k);
         
    }
}
 
// This code is contributed by avanitrachhadiya2155.


Javascript


输出
5
0 2 

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程