TensorFlow bitwise.bitwise_xor() 方法 – Python
TensorFlow bitwise.bitwise_xor()
方法执行 bitwise_xor 操作,结果将设置那些在 a 和 b 中不同的位。该操作是在 a 和 b 的表示上完成的。该方法属于按位模块。
Syntax: tf.bitwise.bitwise_xor(a, b, name=None)
Arguments
- a: This must be a Tensor.It should be from the one of the following types: int8, int16, int32, int64, uint8, uint16, uint32, uint64.
- b: This should also be a Tensor, Type same as a.
- name: This is optional parameter and this is the name of the operation.
Return: It returns a Tensor having the same type as a and b.
让我们通过几个例子来看看这个概念:
示例 1:
示例 1:
# Importing the Tensorflow library
import tensorflow as tf
# A constant a and b
a = tf.constant(43, dtype = tf.int32)
b = tf.constant(5, dtype = tf.int32)
# Applying the bitwise_xor function
# storing the result in 'c'
c = tf.bitwise.bitwise_xor(a, b)
# Initiating a Tensorflow session
with tf.Session() as sess:
print("Input 1", a)
print(sess.run(a))
print("Input 2", b)
print(sess.run(b))
print("Output: ", c)
print(sess.run(c))
输出:
Input 1 Tensor("Const_36:0", shape=(), dtype=int32)
43
Input 2 Tensor("Const_37:0", shape=(), dtype=int32)
5
Output: Tensor("BitwiseXor_4:0", shape=(), dtype=int32)
46
示例 2:
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 2
a = tf.constant([10, 6], dtype = tf.int32)
b = tf.constant([12, 5], dtype = tf.int32)
# Applying the bitwise_xor function
# storing the result in 'c'
c = tf.bitwise.bitwise_xor(a, b)
# Initiating a Tensorflow session
with tf.Session() as sess:
print("Input 1", a)
print(sess.run(a))
print("Input 2", b)
print(sess.run(b))
print("Output: ", c)
print(sess.run(c))
输出:
Input 1 Tensor("Const_34:0", shape=(2, ), dtype=int32)
[10 6]
Input 2 Tensor("Const_35:0", shape=(2, ), dtype=int32)
[12 5]
Output: Tensor("BitwiseXor_3:0", shape=(2, ), dtype=int32)
[6 3]
在评论中写代码?请使用 ide.geeksforgeeks.org,生成链接并在此处分享链接。