板间有无电介质的平行板电容器电容的推导与表达式
平行板电容器已经得到解决。但是你知道它们是什么吗?它是两个板相互平行的配置吗?你为什么不试着自己弄清楚呢?要了解平行板电容器的概念,请阅读本文。
平行板电容器
平行板电容器是具有平行排列的电极和绝缘材料(电介质)的电容器。电极是两个导电板。在它们之间,有一个电介质。对于盘子,这用作分隔器。
平行板电容器的两个板大小相似。它们已插入电源。连接到电池正极端子的极板接收正电荷。另一方面,连接到电池负极端子的极板接收负电荷。由于吸引力,电荷被困在电容器极板内。
平行板电容器的原理
我们知道我们可以将一个盘子充电到一个特定的水平。如果我们提供额外的电荷,则电位会增加,这可能会导致电荷泄漏。当我们在这个带正电的板旁边放置另一个板时,负电荷会流到最靠近带正电的板的一侧。
板 2 上的负电荷会降低板 1 上的电位差,因为两个板都有电荷。另一方面,板 2 上的正电荷会增加板 1 上的电位差。另一方面,板 2 的负电荷会产生更大的影响。因此,板 1 可以获得更高的电荷。因为板 2 有负电荷,所以电位差会更小。平行板电容器就是在此基础上工作的。
存储在电容器中的电荷的依赖性
平行板电容器的两个板之间的电位差与任何一个板中存储的电荷量完全成正比。这种关系可以推导如下:
Q∝V
因此, Q =(常数)V = CV
在哪里
- V 是极板之间的电位差,
- Q 是存储的电荷量,并且
- C是电容器的电容。
平行板电容器的容量
平行板电容器可以保留的电荷量由其电容决定。如果您查看以下等式,您会发现 C 的值越高,电容器可以保留的电荷越多。结果,我们可以看到电容由以下因素决定:
- 板间介质的面积 A &
- 板之间的距离 d。
According to Gauss Law, the electric field is given as:
E = Q ⁄ ε0 A
The potential difference between plates is given as:
V = E d = Q d ⁄ ε0 A
Since, the capacitance is defined as C = Q ⁄ V, so formula of capacitance can be given as:
C = ε0 A ⁄ d
The greatest capacitance is obtained when the plates are positioned extremely close together and the area of the plates is big.
插入两块板之间的介电材料
电荷将被材料的微小偶极矩屏蔽在两个板上。结果,将改变放置在两个板之间的介电物质的影响。相对磁导率 k 决定了材料的磁导率。电容计算如下:
C = ε A / d = k ε 0 A / d
平行板电容器的电容可以通过在板之间添加一个导磁率 k 大于 1 的电介质来增加。介电常数是 K 的另一个名称。
多个平行板电容器
多平行板电容器是平行板电容器的排列,它们之间有电介质材料,成组地装配在一起。具有许多平行板的电容器的电容可以计算如下:
C = [ε0 εr A ⁄ d](N − 1)
Where
- N is the number of plates,
- d is the distance between plates,
- εr is the relative permittivity of dielectric,
- ε0 is the relative permittivity of a vacuum, and
- A is the area of each plate.
示例问题
问题1:一个平行板电容器保持在空气中,面积为0.25 m 2 ,彼此相距0.08 m。计算平行板电容器的电容。
解决方案:
Given:
Area of plates, A = 0.25 m2
Distance between plates, d = 0.08 m
Dielectric constant, k = 1
Relative permittivity, ε0 = 8.854 × 10−12 F ⁄ m
The parallel plate capacitor formula is expressed by,
C = k ε0 A ⁄ d
= 1 × 8.854 × 10−12 × 0.25 / 0.08
= 27.67 × 10−12 F
Hence, the capacitance of the given capacitor is 27.67 × 10−12 F.
问题 2:如果电容为 15 nF,板间距为 0.02m,则确定平行板电容器在空气中的面积。
解决方案:
Given:
Capacitance, C = 15 nF
Distance between plates, d = 0.02 m
Dielectric constant, k = 1
Relative permittivity, ε0 = 8.854 × 10−12 F ⁄ m
The parallel plate capacitor formula is expressed by,
C = k ε0 A ⁄ d
A = C d ⁄ k ε0
= 0.02 × 15 ×10−9 / 1 × 8.854 × 10−12
≈ 34 m2
Hence, area of parallel plate capacitor is 34 m2.
问题 3:推导平行板电容器电容的表达式。
解决方案:
Since, the capacitor is made up of parallel thin plates:
Electric field by a single thin plate, E′ = σ ⁄ 2ε0
Total electric field between the plates, E = σ ⁄ 2ε0 + σ ⁄ 2ε0
E = σ ⁄ ε0
E = Q ⁄ ε0 A
The potential difference between plates is given as:
V = E d = Q d ⁄ ε0 A
Capacitance of a capacitor is given as:
C = Q ⁄ V
Hence, the capacitance of parallel plate capacitor is C = ε0 A ⁄ d.
问题 4:当电容器两端的电位差为 V 时,电容器的电容为 C。电位差增加到3V,新的电容是多少?
解决方案:
The capacitance of a capacitor is given by:
C = Q ⁄ V, where
- Q is the charge on capacitor, and
- V is the potential difference across the plates.
Charge on capacitors rises as the potential difference V increases, so the ratio Q/V remains constant, i.e. capacitance remains constant. Because capacitance is dependent on plate area, medium between plates, and distance between plates, capacitance will be C when the potential difference is increased to 3V.
Hence, the new capacitance of capacitor is C.
问题5:平行板电容器两极板之间的电场如何?
解决方案:
The electric field is directed from the positive to the negative plate. The electric fields generated by the two charged plates build up in the inner area, between the two capacitor plates. As a result, the playing field is consistent throughout.