图表中的关节点(或切割顶点)
如果移除无向连通图中的顶点(以及通过它的边)断开图的连接,则该顶点是一个连接点(或切割顶点)。连接点代表连接网络中的漏洞——其故障会将网络分成 2 个或更多组件的单点。它们对于设计可靠的网络很有用。
对于断开的无向图,关节点是一个顶点移除,它增加了连接组件的数量。
以下是一些用红色包围的关节点的示例图。
如何找到给定图形中的所有关节点?
一个简单的方法是,一个一个地移除所有顶点,看看移除一个顶点是否会导致图不连贯。以下是连接图的简单方法的步骤。
1) 对于每个顶点 v,执行以下操作
.....a) 从图中删除 v
.....b) 查看图是否保持连接(我们可以使用 BFS 或 DFS)
.....c) 将 v 添加回图表
对于使用邻接表表示的图,上述方法的时间复杂度为 O(V*(V+E))。我们能做得更好吗?
AO(V+E) 算法查找所有关节点 (AP)
这个想法是使用 DFS(深度优先搜索)。在 DFS 中,我们遵循称为 DFS 树的树形式的顶点。在 DFS 树中,一个顶点 u 是另一个顶点 v 的父节点,如果 v 是 u 发现的(显然 v 是图中 u 的相邻节点)。在 DFS 树中,如果以下两个条件之一为真,则顶点 u 是关节点。
1) u 是 DFS 树的根,它至少有两个孩子。
2) u 不是 DFS 树的根,并且它有一个子 v,因此以 v 为根的子树中的任何顶点都没有到 u 的祖先之一(在 DFS 树中)的后边。
下图显示了与上面相同的点,还有一个额外的点,即 DFS 树中的叶子永远不能成为关节点。
我们使用附加代码对给定图进行 DFS 遍历,以找出关节点 (AP)。在 DFS 遍历中,我们维护一个 parent[] 数组,其中 parent[u] 存储顶点 u 的父级。在上述两种情况中,第一种情况比较容易检测。对于每个顶点,计算孩子。如果当前访问的顶点 u 是根节点(parent[u] 是 NIL)并且有两个以上的子节点,则打印它。
第二种情况如何处理?第二种情况更棘手。我们维护一个数组 disc[] 来存储顶点的发现时间。对于每个节点 u,我们需要找出可以从以 u 为根的子树到达的最早访问的顶点(发现时间最短的顶点)。所以我们维护一个额外的数组low[],定义如下。
low[u] = min(disc[u], disc[w])
where w is an ancestor of u and there is a back edge from
some descendant of u to w.
以下是 Tarjan 寻找关节点的算法的实现。
C++
// C++ program to find articulation points in an undirected graph
#include
using namespace std;
// A recursive function that find articulation
// points using DFS traversal
// adj[] --> Adjacency List representation of the graph
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
// discovery time) that can be reached from subtree
// rooted with current vertex
// parent --> Stores the parent vertex in DFS tree
// isAP[] --> Stores articulation points
void APUtil(vector adj[], int u, bool visited[],
int disc[], int low[], int& time, int parent,
bool isAP[])
{
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
for (auto v : adj[u]) {
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v]) {
children++;
APUtil(adj, v, visited, disc, low, time, u, isAP);
// Check if the subtree rooted with v has
// a connection to one of the ancestors of u
low[u] = min(low[u], low[v]);
// If u is not root and low value of one of
// its child is more than discovery value of u.
if (parent != -1 && low[v] >= disc[u])
isAP[u] = true;
}
// Update low value of u for parent function calls.
else if (v != parent)
low[u] = min(low[u], disc[v]);
}
// If u is root of DFS tree and has two or more children.
if (parent == -1 && children > 1)
isAP[u] = true;
}
void AP(vector adj[], int V)
{
int disc[V] = { 0 };
int low[V];
bool visited[V] = { false };
bool isAP[V] = { false };
int time = 0, par = -1;
// Adding this loop so that the
// code works even if we are given
// disconnected graph
for (int u = 0; u < V; u++)
if (!visited[u])
APUtil(adj, u, visited, disc, low,
time, par, isAP);
// Printing the APs
for (int u = 0; u < V; u++)
if (isAP[u] == true)
cout << u << " ";
}
// Utility function to add an edge
void addEdge(vector adj[], int u, int v)
{
adj[u].push_back(v);
adj[v].push_back(u);
}
int main()
{
// Create graphs given in above diagrams
cout << "Articulation points in first graph \n";
int V = 5;
vector adj1[V];
addEdge(adj1, 1, 0);
addEdge(adj1, 0, 2);
addEdge(adj1, 2, 1);
addEdge(adj1, 0, 3);
addEdge(adj1, 3, 4);
AP(adj1, V);
cout << "\nArticulation points in second graph \n";
V = 4;
vector adj2[V];
addEdge(adj2, 0, 1);
addEdge(adj2, 1, 2);
addEdge(adj2, 2, 3);
AP(adj2, V);
cout << "\nArticulation points in third graph \n";
V = 7;
vector adj3[V];
addEdge(adj3, 0, 1);
addEdge(adj3, 1, 2);
addEdge(adj3, 2, 0);
addEdge(adj3, 1, 3);
addEdge(adj3, 1, 4);
addEdge(adj3, 1, 6);
addEdge(adj3, 3, 5);
addEdge(adj3, 4, 5);
AP(adj3, V);
return 0;
}
Java
// A Java program to find articulation
// points in an undirected graph
import java.util.*;
class Graph {
static int time;
static void addEdge(ArrayList > adj, int u, int v)
{
adj.get(u).add(v);
adj.get(v).add(u);
}
static void APUtil(ArrayList > adj, int u,
boolean visited[], int disc[], int low[],
int parent, boolean isAP[])
{
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
for (Integer v : adj.get(u)) {
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v]) {
children++;
APUtil(adj, v, visited, disc, low, u, isAP);
// Check if the subtree rooted with v has
// a connection to one of the ancestors of u
low[u] = Math.min(low[u], low[v]);
// If u is not root and low value of one of
// its child is more than discovery value of u.
if (parent != -1 && low[v] >= disc[u])
isAP[u] = true;
}
// Update low value of u for parent function calls.
else if (v != parent)
low[u] = Math.min(low[u], disc[v]);
}
// If u is root of DFS tree and has two or more children.
if (parent == -1 && children > 1)
isAP[u] = true;
}
static void AP(ArrayList > adj, int V)
{
boolean[] visited = new boolean[V];
int[] disc = new int[V];
int[] low = new int[V];
boolean[] isAP = new boolean[V];
int time = 0, par = -1;
// Adding this loop so that the
// code works even if we are given
// disconnected graph
for (int u = 0; u < V; u++)
if (visited[u] == false)
APUtil(adj, u, visited, disc, low, par, isAP);
for (int u = 0; u < V; u++)
if (isAP[u] == true)
System.out.print(u + " ");
System.out.println();
}
public static void main(String[] args)
{
// Creating first example graph
int V = 5;
ArrayList > adj1 =
new ArrayList >(V);
for (int i = 0; i < V; i++)
adj1.add(new ArrayList());
addEdge(adj1, 1, 0);
addEdge(adj1, 0, 2);
addEdge(adj1, 2, 1);
addEdge(adj1, 0, 3);
addEdge(adj1, 3, 4);
System.out.println("Articulation points in first graph");
AP(adj1, V);
// Creating second example graph
V = 4;
ArrayList > adj2 =
new ArrayList >(V);
for (int i = 0; i < V; i++)
adj2.add(new ArrayList());
addEdge(adj2, 0, 1);
addEdge(adj2, 1, 2);
addEdge(adj2, 2, 3);
System.out.println("Articulation points in second graph");
AP(adj2, V);
// Creating third example graph
V = 7;
ArrayList > adj3 =
new ArrayList >(V);
for (int i = 0; i < V; i++)
adj3.add(new ArrayList());
addEdge(adj3, 0, 1);
addEdge(adj3, 1, 2);
addEdge(adj3, 2, 0);
addEdge(adj3, 1, 3);
addEdge(adj3, 1, 4);
addEdge(adj3, 1, 6);
addEdge(adj3, 3, 5);
addEdge(adj3, 4, 5);
System.out.println("Articulation points in third graph");
AP(adj3, V);
}
}
Python3
# Python program to find articulation points in an undirected graph
from collections import defaultdict
# This class represents an undirected graph
# using adjacency list representation
class Graph:
def __init__(self, vertices):
self.V = vertices # No. of vertices
self.graph = defaultdict(list) # default dictionary to store graph
self.Time = 0
# function to add an edge to graph
def addEdge(self, u, v):
self.graph[u].append(v)
self.graph[v].append(u)
'''A recursive function that find articulation points
using DFS traversal
u --> The vertex to be visited next
visited[] --> keeps track of visited vertices
disc[] --> Stores discovery times of visited vertices
parent[] --> Stores parent vertices in DFS tree
ap[] --> Store articulation points'''
def APUtil(self, u, visited, ap, parent, low, disc):
# Count of children in current node
children = 0
# Mark the current node as visited and print it
visited[u]= True
# Initialize discovery time and low value
disc[u] = self.Time
low[u] = self.Time
self.Time += 1
# Recur for all the vertices adjacent to this vertex
for v in self.graph[u]:
# If v is not visited yet, then make it a child of u
# in DFS tree and recur for it
if visited[v] == False :
parent[v] = u
children += 1
self.APUtil(v, visited, ap, parent, low, disc)
# Check if the subtree rooted with v has a connection to
# one of the ancestors of u
low[u] = min(low[u], low[v])
# u is an articulation point in following cases
# (1) u is root of DFS tree and has two or more children.
if parent[u] == -1 and children > 1:
ap[u] = True
#(2) If u is not root and low value of one of its child is more
# than discovery value of u.
if parent[u] != -1 and low[v] >= disc[u]:
ap[u] = True
# Update low value of u for parent function calls
elif v != parent[u]:
low[u] = min(low[u], disc[v])
# The function to do DFS traversal. It uses recursive APUtil()
def AP(self):
# Mark all the vertices as not visited
# and Initialize parent and visited,
# and ap(articulation point) arrays
visited = [False] * (self.V)
disc = [float("Inf")] * (self.V)
low = [float("Inf")] * (self.V)
parent = [-1] * (self.V)
ap = [False] * (self.V) # To store articulation points
# Call the recursive helper function
# to find articulation points
# in DFS tree rooted with vertex 'i'
for i in range(self.V):
if visited[i] == False:
self.APUtil(i, visited, ap, parent, low, disc)
for index, value in enumerate (ap):
if value == True: print (index,end=" ")
# Create a graph given in the above diagram
g1 = Graph(5)
g1.addEdge(1, 0)
g1.addEdge(0, 2)
g1.addEdge(2, 1)
g1.addEdge(0, 3)
g1.addEdge(3, 4)
print ("\nArticulation points in first graph ")
g1.AP()
g2 = Graph(4)
g2.addEdge(0, 1)
g2.addEdge(1, 2)
g2.addEdge(2, 3)
print ("\nArticulation points in second graph ")
g2.AP()
g3 = Graph (7)
g3.addEdge(0, 1)
g3.addEdge(1, 2)
g3.addEdge(2, 0)
g3.addEdge(1, 3)
g3.addEdge(1, 4)
g3.addEdge(1, 6)
g3.addEdge(3, 5)
g3.addEdge(4, 5)
print ("\nArticulation points in third graph ")
g3.AP()
# This code is contributed by Neelam Yadav
C#
// A C# program to find articulation
// points in an undirected graph
using System;
using System.Collections.Generic;
// This class represents an undirected graph
// using adjacency list representation
public class Graph {
private int V; // No. of vertices
// Array of lists for Adjacency List Representation
private List[] adj;
int time = 0;
static readonly int NIL = -1;
// Constructor
Graph(int v)
{
V = v;
adj = new List[v];
for (int i = 0; i < v; ++i)
adj[i] = new List();
}
// Function to add an edge into the graph
void addEdge(int v, int w)
{
adj[v].Add(w); // Add w to v's list.
adj[w].Add(v); // Add v to w's list
}
// A recursive function that find articulation points using DFS
// u --> The vertex to be visited next
// visited[] --> keeps track of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
// ap[] --> Store articulation points
void APUtil(int u, bool[] visited, int[] disc,
int[] low, int[] parent, bool[] ap)
{
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices adjacent to this
foreach(int i in adj[u])
{
int v = i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v]) {
children++;
parent[v] = u;
APUtil(v, visited, disc, low, parent, ap);
// Check if the subtree rooted with v has
// a connection to one of the ancestors of u
low[u] = Math.Min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more children.
if (parent[u] == NIL && children > 1)
ap[u] = true;
// (2) If u is not root and low value of one of its child
// is more than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
ap[u] = true;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u] = Math.Min(low[u], disc[v]);
}
}
// The function to do DFS traversal.
// It uses recursive function APUtil()
void AP()
{
// Mark all the vertices as not visited
bool[] visited = new bool[V];
int[] disc = new int[V];
int[] low = new int[V];
int[] parent = new int[V];
bool[] ap = new bool[V]; // To store articulation points
// Initialize parent and visited, and
// ap(articulation point) arrays
for (int i = 0; i < V; i++) {
parent[i] = NIL;
visited[i] = false;
ap[i] = false;
}
// Call the recursive helper function to find articulation
// points in DFS tree rooted with vertex 'i'
for (int i = 0; i < V; i++)
if (visited[i] == false)
APUtil(i, visited, disc, low, parent, ap);
// Now ap[] contains articulation points, print them
for (int i = 0; i < V; i++)
if (ap[i] == true)
Console.Write(i + " ");
}
// Driver method
public static void Main(String[] args)
{
// Create graphs given in above diagrams
Console.WriteLine("Articulation points in first graph ");
Graph g1 = new Graph(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.AP();
Console.WriteLine();
Console.WriteLine("Articulation points in Second graph");
Graph g2 = new Graph(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.AP();
Console.WriteLine();
Console.WriteLine("Articulation points in Third graph ");
Graph g3 = new Graph(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.AP();
}
}
// This code is contributed by PrinciRaj1992
Javascript
输出:
Articulation points in first graph
0 3
Articulation points in second graph
1 2
Articulation points in third graph
1
时间复杂度:上述函数是带有附加数组的简单 DFS。因此,时间复杂度与 DFS 相同,即图的邻接表表示的 O(V+E)。